- Browse by Subject
Browsing by Subject "Website"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Brand and usability in content-intensive websites(2014-07-11) Yang, Tao; Bolchini, Davide; Pfaff, Mark; MacDorman, Karl F.; Cox, Anthony D.Our connections to the digital world are invoked by brands, but the intersection of branding and interaction design is still an under-investigated area. Particularly, current websites are designed not only to support essential user tasks, but also to communicate an institution's intended brand values and traits. What we do not yet know, however, is which design factors affect which aspect of a brand. To demystify this issue, three sub-projects were conducted. The first project developed a systematic approach for evaluating the branding effectiveness of content-intensive websites (BREW). BREW gauges users' brand perceptions on four well-known branding constructs: brand as product, brand as organization, user image, and brand as person. It also provides rich guidelines for eBranding researchers in regard to planning and executing a user study and making improvement recommendations based on the study results. The second project offered a standardized perceived usability questionnaire entitled DEEP (design-oriented evaluation of perceived web usability). DEEP captures the perceived website usability on five design-oriented dimensions: content, information architecture, navigation, layout consistency, and visual guidance. While existing questionnaires assess more holistic concepts, such as ease-of-use and learnability, DEEP can more transparently reveal where the problem actually lies. Moreover, DEEP suggests that the two most critical and reliable usability dimensions are interface consistency and visual guidance. Capitalizing on the BREW approach and the findings from DEEP, a controlled experiment (N=261) was conducted by manipulating interface consistency and visual guidance of an anonymized university website to see how these variables may affect the university's image. Unexpectedly, consistency did not significantly predict brand image, while the effect of visual guidance on brand perception showed a remarkable gender difference. When visual guidance was significantly worsened, females became much less satisfied with the university in terms of brand as product (e.g., teaching and research quality) and user image (e.g., students' characteristics). In contrast, males' perceptions of the university's brand image stayed the same in most circumstances. The reason for this gender difference was revealed through a further path analysis and a follow-up interview, which inspired new research directions to unpack even more the nexus between branding and interaction design.Item Plant Level IIoT Based Energy Management Framework(2023-05) Koshy, Liya Elizabeth; Chien, Stanley Yung-Ping; Chen, Jie; King, BrianThe Energy Monitoring Framework, designed and developed by IAC, IUPUI, aims to provide a cloud-based solution that combines business analytics with sensors for real-time energy management at the plant level using wireless sensor network technology. The project provides a platform where users can analyze the functioning of a plant using sensor data. The data would also help users to explore the energy usage trends and identify any energy leaks due to malfunctions or other environmental factors in their plant. Additionally, the users could check the machinery status in their plant and have the capability to control the equipment remotely. The main objectives of the project include the following: • Set up a wireless network using sensors and smart implants with a base station/ controller. • Deploy and connect the smart implants and sensors with the equipment in the plant that needs to be analyzed or controlled to improve their energy efficiency. • Set up a generalized interface to collect and process the sensor data values and store the data in a database. • Design and develop a generic database compatible with various companies irrespective of the type and size. • Design and develop a web application with a generalized structure. Hence the database can be deployed at multiple companies with minimum customization. The web app should provide the users with a platform to interact with the data to analyze the sensor data and initiate commands to control the equipment. The General Structure of the project constitutes the following components: • A wireless sensor network with a base station. • An Edge PC, that interfaces with the sensor network to collect the sensor data and sends it out to the cloud server. The system also interfaces with the sensor network to send out command signals to control the switches/ actuators. • A cloud that hosts a database and an API to collect and store information. • A web application hosted in the cloud to provide an interactive platform for users to analyze the data. The project was demonstrated in: • Lecture Hall (https://iac-lecture-hall.engr.iupui.edu/LectureHallFlask/). • Test Bed (https://iac-testbed.engr.iupui.edu/testbedflask/). • A company in Indiana. The above examples used sensors such as current sensors, temperature sensors, carbon dioxide sensors, and pressure sensors to set up the sensor network. The equipment was controlled using compactable switch nodes with the chosen sensor network protocol. The energy consumption details of each piece of equipment were measured over a few days. The data was validated, and the system worked as expected and helped the user to monitor, analyze and control the connected equipment remotely.