- Browse by Subject
Browsing by Subject "Wearable computers"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Big Data Edge on Consumer Devices for Precision Medicine(IEEE, 2022) Stauffer, Jake; Zhang, Qingxue; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringConsumer electronics like smartphones and wearable computers are furthering precision medicine significantly, through capturing/leveraging big data on the edge towards real-time, interactive healthcare applications. Here we propose a big data edge platform that can, not only capture/manage different biomedical dynamics, but also enable real-time visualization of big data. The big data can also be uploaded to cloud for long-term management. The system has been evaluated on the real-world biomechanical data-based application, and demonstrated its effectiveness on big data management and interactive visualization. This study is expected to greatly advance big data-driven precision medicine applications.Item Curriculum innovations through advancement of MEMS/NEMS and wearable devices technologies(2017) Shayesteh, S.; Rizkalla, M.E.; El-Sharkawy, M.; Electrical and Computer Engineering, School of Engineering and TechnologyState of the art technologies using both micro- and nano-electromechanical systems (MEMS and NEMS) and wearable and Internet of Things (IoT) devices have impacted our daily lives in applications including wearable devices and sensor technology as applied to renewable energies and health sciences, among others. Several examples are device implants, optical devices, micro and nanomachining, embedded systems and integrated nano sensor systems. The recent Electrical and Computer Engineering (ECE) and Mechanical Engineering (ME) curricula lacked inclusion of these elements within their programs. Close scrutiny to the need of local industry from engineering graduates has emphasized the motivation to develop these materials into the engineering curricula. Within the ECE curriculum, a new senior course was developed to cover MEMS/NEMS devices as well as wearable and IoT devices with Bluetooth and wireless features. The MEMS/NEMS module of the new course integrates software CAD tools and hardware implementations. It is a project-based course where students learn software for the device process, then fabricate the device in the school laboratories. The wearable and IoT devices module introduces the students to Wearable and Internet of Things systems. It covers sensors and sensor fusion, embedded processors, tools for wearable and IoT applications, and design using Bluetooth and wireless IoT systems. The new course development objectives are hands-on practice, and preparation of senior students for industrial and research careers. In addition, an introductory MEMS topic section is added in the sophomore level electrical engineering course offered to mechanical engineering students. It introduces MEMS devices employed as energy conversion devices. Based on our recent feedback, the students have favorably accepted this MEMS addition to the course. This paper details the software and hardware development elements of the new course. It also presents the assessment data for students' satisfaction for both the electrical and computer engineering (ECE), and mechanical engineering (ME) students. © American Society for Engineering Education, 2017.