- Browse by Subject
Browsing by Subject "Warburg effect"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Acidic microenvironment and bone pain in cancer-colonized bone(SpringerNature, 2015-05-06) Yoneda, Toshiyuki; Hiasa, Masahiro; Nagata, Yuki; Okui, Tatsuo; White, Fletcher A.; Department of Medicine, IU School of MedicineSolid cancers and hematologic cancers frequently colonize bone and induce skeletal-related complications. Bone pain is one of the most common complications associated with cancer colonization in bone and a major cause of increased morbidity and diminished quality of life, leading to poor survival in cancer patients. Although the mechanisms responsible for cancer-associated bone pain (CABP) are poorly understood, it is likely that complex interactions among cancer cells, bone cells and peripheral nerve cells contribute to the pathophysiology of CABP. Clinical observations that specific inhibitors of osteoclasts reduce CABP indicate a critical role of osteoclasts. Osteoclasts are proton-secreting cells and acidify extracellular bone microenvironment. Cancer cell-colonized bone also releases proton/lactate to avoid intracellular acidification resulting from increased aerobic glycolysis known as the Warburg effect. Thus, extracellular microenvironment of cancer-colonized bone is acidic. Acidosis is algogenic for nociceptive sensory neurons. The bone is densely innervated by the sensory neurons that express acid-sensing nociceptors. Collectively, CABP is evoked by the activation of these nociceptors on the sensory neurons innervating bone by the acidic extracellular microenvironment created by bone-resorbing osteoclasts and bone-colonizing cancer cells. As current treatments do not satisfactorily control CABP and can elicit serious side effects, new therapeutic interventions are needed to manage CABP. Understanding of the cellular and molecular mechanism by which the acidic extracellular microenvironment is created in cancer-colonized bone and by which the expression and function of the acid-sensing nociceptors on the sensory neurons are regulated would facilitate to develop novel therapeutic approaches for the management of CABP.Item Contribution of acidic extracellular microenvironment of cancer-colonized bone to bone pain(Elsevier, 2015-10) Yoneda, Toshiyuki; Hiasa, Masahiro; Nagata, Yuki; Okui, Tatsuo; White, Fletcher; Department of Medicine, IU School of MedicineSolid and hematologic cancer colonized bone produces a number of pathologies. One of the most common complications is bone pain. Cancer-associated bone pain (CABP) is a major cause of increased morbidity and diminishes the quality of life and affects survival. Current treatments do not satisfactorily control CABP and can elicit adverse effects. Thus, new therapeutic interventions are needed to manage CABP. However, the mechanisms responsible for CABP are poorly understood. The observation that specific osteoclast inhibitors can reduce CABP in patients indicates a critical role of osteoclasts in the pathophysiology of CABP. Osteoclasts create an acidic extracellular microenvironment by secretion of protons via vacuolar proton pumps during bone resorption. In addition, bone-colonized cancer cells also release protons and lactate via plasma membrane pH regulators to avoid intracellular acidification resulting from increased aerobic glycolysis known as the Warburg effect. Since acidosis is algogenic for sensory neurons and bone is densely innervated by sensory neurons that express acid-sensing nociceptors, the acidic bone microenvironments can evoke CABP. Understanding of the mechanism by which the acidic extracellular microenvironment is created in cancer-colonized bone and the expression and function of the acid-sensing nociceptors are regulated should facilitate the development of novel approaches for management of CABP. Here, the contribution of the acidic microenvironment created in cancer-colonized bone to elicitation of CABP and potential therapeutic implications of blocking the development and recognition of acidic microenvironment will be described. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.Item Metabolomic profiling demonstrates evidence for kidney and urine metabolic dysregulation in a piglet model of cardiac surgery-induced acute kidney injury(American Physiological Society, 2022-07-01) Davidson, Jesse A.; Robison, Justin; Khailova, Ludmila; Frank, Benjamin S.; Jaggers, James; Ing, Richard J.; Lawson, Scott; Iguidbashian, John; Ali, Eiman; Treece, Amy; Soranno, Danielle E.; Osorio-Lujan, Suzanne; Klawitter, Jelena; Pediatrics, School of MedicineAcute kidney injury (AKI) is a common cause of morbidity after congenital heart disease surgery. Progress on diagnosis and therapy remains limited, however, in part due to poor mechanistic understanding and a lack of relevant translational models. Metabolomic approaches could help identify novel mechanisms of injury and potential therapeutic targets. In the present study, we used a piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest (CPB/DHCA) and targeted metabolic profiling of kidney tissue, urine, and serum to evaluate metabolic changes specific to animals with histological acute kidney injury. CPB/DHCA animals with acute kidney injury were compared with those without acute kidney injury and mechanically ventilated controls. Acute kidney injury occurred in 10 of 20 CPB/DHCA animals 4 h after CPB/DHCA and 0 of 7 control animals. Injured kidneys showed a distinct tissue metabolic profile compared with uninjured kidneys (R2 = 0.93, Q2 = 0.53), with evidence of dysregulated tryptophan and purine metabolism. Nine urine metabolites differed significantly in animals with acute kidney injury with a pattern suggestive of increased aerobic glycolysis. Dysregulated metabolites in kidney tissue and urine did not overlap. CPB/DHCA strongly affected the serum metabolic profile, with only one metabolite that differed significantly with acute kidney injury (pyroglutamic acid, a marker of oxidative stress). In conclusion, based on these findings, kidney tryptophan and purine metabolism are candidates for further mechanistic and therapeutic investigation. Urine biomarkers of aerobic glycolysis could help diagnose early acute kidney injury after CPB/DHCA and warrant further evaluation. The serum metabolites measured at this early time point did not strongly differentiate based on acute kidney injury.NEW & NOTEWORTHY This project explored the metabolic underpinnings of postoperative acute kidney injury (AKI) following pediatric cardiac surgery in a translationally relevant large animal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Here, we present novel evidence for dysregulated tryptophan catabolism and purine catabolism in kidney tissue and increased urinary glycolysis intermediates in animals who developed histological AKI. These pathways represent potential diagnostic and therapeutic targets for postoperative AKI in this high-risk population.Item RNAase III-Type Enzyme Dicer Regulates Mitochondrial Fatty Acid Oxidative Metabolism in Cardiac Mesenchymal Stem Cells(MDPI, 2019-11-07) Su, Xuan; Jin, Yue; Shen, Yan; Kim, Il-man; Weintraub, Neal L.; Tang, Yaoliang; Anatomy and Cell Biology, School of MedicineCardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of β-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation.Item Warburg Effects in Cancer and Normal Proliferating Cells: Two Tales of the Same Name(Elsevier, 2019) Sun, Huiyan; Chen, Liang; Cao, Sha; Liang, Yanchun; Xu, Ying; Biostatistics, School of Public HealthIt has been observed that both cancer tissue cells and normal proliferating cells (NPCs) have the Warburg effect. Our goal here is to demonstrate that they do this for different reasons. To accomplish this, we have analyzed the transcriptomic data of over 7000 cancer and control tissues of 14 cancer types in TCGA and data of five NPC types in GEO. Our analyses reveal that NPCs accumulate large quantities of ATPs produced by the respiration process before starting the Warburg effect, to raise the intracellular pH from ∼6.8 to ∼7.2 and to prepare for cell division energetically. Once cell cycle starts, the cells start to rely on glycolysis for ATP generation followed by ATP hydrolysis and lactic acid release, to maintain the elevated intracellular pH as needed by cell division since together the three processes are pH neutral. The cells go back to the normal respiration-based ATP production once the cell division phase ends. In comparison, cancer cells have reached their intracellular pH at ∼7.4 from top down as multiple acid-loading transporters are up-regulated and most acid-extruding ones except for lactic acid exporters are repressed. Cancer cells use continuous glycolysis for ATP production as way to acidify the intracellular space since the lactic acid secretion is decoupled from glycolysis-based ATP generation and is pH balanced by increased expressions of acid-loading transporters. Co-expression analyses suggest that lactic acid secretion is regulated by external, non-pH related signals. Overall, our data strongly suggest that the two cell types have the Warburg effect for very different reasons.