ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Wang and Merrifield Resins"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Saponification of N-Acylated L-Phenylalanine Wang and Merrifield Resins. Assessment of Cleavage Efficiency and Epimerization
    (Office of the Vice Chancellor for Research, 2013-04-05) Carnahan, Jon M.; O'Donnell, Martin J. O.; Samaritoni, J. Geno; Crews, DeMarcus K.; Lawrence, Brian M.; Scott, William L.
    As part of a continuing effort to modify Distributed Drug Discovery (D3) synthetic procedures to enhance safety and accommodate the limited resources available to students in developing-world countries, we have recently begun to examine alternatives to trifluoroacetic acid (TFA)-cleavage of amino acid derivatives from polystyrene-based resins. Cleavage of a representative example, N-(4-chlorobenzoyl)-L-phenylalanine, from both Wang and Merrifield resins was accomplished in thirty minutes at room temperature using 0.5M sodium hydroxide in methanol/tetrahydrofuran. In a side-by-side comparison with cleavage using TFA, results indicated that saponification from Wang resin was incomplete after thirty minutes. Experiments designed to examine separately the effect of reaction time, temperature, and concentration were performed and results will be presented. Additionally, investigations were performed to assess the degree of epimerization which had occurred during cleavage of Merrifield-bound L-phenylalanine acylated with both (R)- and (S)-mandelic acid. Results revealed a small but significant amount of epimerization (15:1 to 31:1 diastereomeric ratios) after a thirty-minute cleavage time at room temperature.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University