- Browse by Subject
Browsing by Subject "Voxel-based morphometry"
Item Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage(Springer, 2013) Conroy, Susan K.; McDonald, Brenna C.; Smith, Dori J.; Moser, Lyndsi R.; West, John D.; Kamendulis, Lisa M.; Klaunig, James E.; Champion, Victoria L.; Unverzagt, Frederick W.; Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineNeuroimaging studies have begun to uncover the neural substrates of cancer and treatment-related cognitive dysfunction, but the time course of these changes in the years following chemotherapy is unclear. This study analyzed multimodality 3T MRI scans to examine the structural and functional effects of chemotherapy and post-chemotherapy interval (PCI) in a cohort of breast cancer survivors (BCS; n = 24; PCI mean 6, range 3-10 y) relative to age- and education-matched healthy controls (HC; n = 23). Assessments included voxel-based morphometry for gray matter density (GMD) and fMRI for activation profile during a 3-back working memory task. The relationships between brain regions associated with PCI and neuropsychological performance, self-reported cognition, and oxidative and direct DNA damage as measured in peripheral lymphocytes were assessed in secondary analyses. PCI was positively associated with GMD and activation on fMRI in the right anterior frontal region (Brodmann Areas 9 and 10) independent of participant age. GMD in this region was also positively correlated with global neuropsychological function. Memory dysfunction, cognitive complaints, and oxidative DNA damages were increased in BCS compared with HC. Imaging results indicated lower fMRI activation in several regions in the BCS group. BCS also had lower GMD than HC in several regions, and in these regions, GMD was inversely related to oxidative DNA damage and learning and memory neuropsychological domain scores. This is the first study to show structural and functional effects of PCI and to relate oxidative DNA damage to brain alterations in BCS. The relationship between neuroimaging and cognitive function indicates the potential clinical relevance of these findings. The relationship with oxidative DNA damage provides a mechanistic clue warranting further investigation.Item Cognitive decline and white matter changes in mesial temporal lobe epilepsy(Wolters Kluwer, 2018-08) Xu, Shang-wen; Xi, Ji-hui; Lin, Chen; Wang, Xiao-yang; Fu, Li-yuan; Kralik, Stephen Francis; Chen, Zi-qian; Radiology and Imaging Sciences, School of MedicineNoninvasive imaging plays a pivotal role in assessing the brain structural and functional changes in presurgical mesial temporal lobe epilepsy (MTLE) patients. Our goal was to study the relationship between the changes of cerebral white matter (WM) and cognitive functions in MTLE patients.Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) MRI were performed on 24 right-handed MTLE patients (12 with left MTLE and 12 with right MTLE) and 12 matching healthy controls. Gray matter (GM), WM, and whole brain (WB) volumes were measured with VBM while fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were measured with TBSS. All patients and controls also underwent Montreal Cognitive Assessment (MoCA) before MRI.WM volume and the ratio of WM volume versus WB volume were significantly lower in MTLE patients compared with controls. WM volume in MTLE patients had a positive correlation with MoCA score (r = 0.71, P < .001) and a negative correlation with the duration of epilepsy (r = -0.693, P < .001). Volumetric differences were mainly located in the corpus callosum, uncinate fasciculus, inferior longitudinal fasciculus, and superior longitudinal fasciculus. FA of both left MTLE and right MTLE groups was significantly decreased, while MD, AD, and RD were significantly increased. Most left MTLE patients showed bilateral WM fiber tract changes versus ipsilateral changes for right MTLE patients.Changes in DTI parameters and WM volume were found in MTLE patients and more ipsilateral changes were seen with right-sided MTLE. Cognitive changes of MTLE patients were found to be correlated with the changes in WM structure. These findings not only provide useful information for lateralization of the seizure focus but can also be used to explain functional connectivity disorders which may be an important physiological basis for cognitive changes in patients with MTLE.Item Judgment in Older Adults with Normal Cognition, Cognitive Complaints, MCI, and Mild AD: Relation to Regional Frontal Gray Matter(Springer Nature, 2009) Rabin, Laura A.; Saykin, Andrew J.; West, John D.; Borgos, Marlana J.; Wishart, Heather A.; Nutter-Upham, Katherine E.; Flashman, Laura A.; Santulli, Robert B.; Radiology and Imaging Sciences, School of MedicineWe investigated regional gray matter (GM) reduction as a predictor of judgment ability in 120 non-depressed older adults with varying degrees of cognitive complaints and/or impairment (including those with MCI and mild AD). Participants underwent neuropsychological assessment, including the Test of Practical Judgment (TOP-J), a recently developed instrument that evaluates judgment and problem solving related to safety, medical, social/ethical, and financial issues. Structural MR scanning included T1-weighted SPGR volumes acquired at 1.5 Tesla. We used voxel-based morphometry to analyze the relationship between GM density and TOP-J scores, controlling for age, education, gender, intracranial volume, verbal memory, and crystallized knowledge. Consistent with our hypothesis, judgment ability correlated with GM density in prefrontal regions (left inferior and superior frontal gyri). Findings extend previous observations of frontal involvement in higher-order cognitive abilities/executive functions and provide initial validation of the TOP-J's sensitivity to the integrity of these brain regions in individuals at risk for dementia.