- Browse by Subject
Browsing by Subject "Voltage-sensitive calcium channels"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells(Springer, 2023) Reyes Fernandez, Perla C.; Wright, Christian S.; Farach-Carson, Mary C.; Thompson, William R.; Physical Therapy, School of Health and Human SciencesIn addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.Item Gabapentin Disrupts Binding of Perlecan to the α2δ1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation(MDPI, 2022-12-12) Reyes Fernandez, Perla C.; Wright, Christian S.; Masterson, Adrianna N.; Yi, Xin; Tellman, Tristen V.; Bonteanu, Andrei; Rust, Katie; Noonan, Megan L.; White, Kenneth E.; Lewis, Karl J.; Sankar, Uma; Hum, Julia M.; Bix, Gregory; Wu, Danielle; Robling, Alexander G.; Sardar, Rajesh; Farach-Carson, Mary C.; Thompson, William R.; Physical Therapy, School of Health and Human SciencesOur understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.