- Browse by Subject
Browsing by Subject "Viability"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comparison of left ventriculography and coronary arteriography with positron emission tomography in assessment of myocardial viability(Wiley, 2003-02) Bourdillon, Patrick D. V.; Von Der Lohe, Elisabeth; Lewis, Stephen J.; Sharifi, Mohsen; Burt, Robert W.; Sawada, Stephen G.; Medicine, School of MedicineBackground: Assessment of viability of myocardium after an ischemic insult is an important clinical question that affects decisions pertaining to potential revascularization. The results of contrast left ventriculograms and coronary angiography were compared to positron emission tomography (PET) in 64 patients with coronary artery disease and reduced left ventricular function. Hypothesis: The study was undertaken to determine the relative utility of the invasive studies in the assessment of viability. Methods: Right anterior oblique ventriculograms were assessed for hypokinesis, akinesis, or dyskinesis in six segments. The PET scans were assessed for viability by visual estimation of flourodeoxyglucose (FDG) uptake in six segments that corresponded to the segments analyzed on the ventriculograms. Results: Of a total of 373 segments successfully analyzed by PET, 272 were judged to be viable (normal or hypokinetic) by contrast ventriculography. Of these, 253 (93%) were considered viable by PET. Of 177 segments deemed either normal or mild‐to‐moderately hypokinetic by ventriculography, 170 (94%) were viable by PET. Of 95 severely hypokinetic segments, 83 (84%) were viable by PET. Of 79 akinetic segments, 44 (56%) were considered viable by PET. For segments that were dyskinetic and thought to be nonviable by ventriculography, 19 of 22 (86%) were also considered nonviable by PET. For 294 segments for which a determination on viability was made based on the presence of wall motion on the ventriculogram (normal, hypokinetic, or dyskinetic; not akinetic), there was excellent agreement with PET (93%; p < 0.001). In 49 patients there was akinesis in no more than one segment in either the anterior or inferior territories, indicating the potential for assessment of viability by ventriculography in at least two of three segments in each territory. Coronary anatomy was analyzed to assess whether coronary patency could help in assessing viability. Segments supplied by patent arteries were more likely to be viable by PET than segments supplied by occluded arteries (p < 0.001). Akinetic segments were more likely to be supplied by occluded arteries (56 vs. 23, 72%). Dyskinetic segments were predominantly nonviable by PET (86%) and were usually supplied by occluded arteries (77%). Conclusion: In patients in whom the assessment of viability is clinically relevant, the presence of systolic inward motion on the contrast left ventriculogram correlates well with segment viability by PET, while outward or dyskinetic movement correlates well with nonviability. Thus, the use of PET to assess viability in many patients may be unnecessary.Item Effects of Alpha-Connexin Carboxyl-Terminal Peptide (aCT1) and Bowman-Birk Protease Inhibitor (BBI) on Canine Oral Mucosal Melanoma (OMM) Cells(Frontiers Media, 2021-06-10) Sato, Ayami; da Fonseca, Ivone Izabel Mackowiak; Nagamine, Márcia Kazumi; de Toledo, Gabriela Fernandes; Olio, Rennan; Hernandez-Blazquez, Francisco Javier; Yano, Tomohiro; Yeh, Elizabeth Shinmay; Dagli, Maria Lucia Zaidan; Pharmacology and Toxicology, School of MedicineOral mucosal melanomas (OMM) are aggressive cancers in dogs, and are good models for human OMM. Gap junctions are composed of connexin units, which may have altered expression patterns and/or subcellular localization in cancer cells. Cell-to-cell communication by gap junctions is often impaired in cancer cells, including in melanomas. Meanwhile, the upregulated expression of the gap junction protein connexin 43 (Cx43) inhibits melanoma progression. The α-connexin carboxyl-terminal (aCT1) peptide reportedly maintains Cx43 expression and cell-cell communication in human mammary cells and increases the communication activity through gap junctions in functional assays, therefore causing decreased cell proliferation. The Bowman-Birk protease inhibitor (BBI), a component of soybeans, induces Cx43 expression in several tumor cells as a trypsin–chymotrypsin inhibition function, with antineoplastic effects. This study investigated the effect of aCT1 peptide and BBI treatment, alone or in combination, on TLM1 canine melanoma cell viability. Cell viability after treatment with aCT1, the reverse sequence peptide (R-pep), and/or BBI for 5 days was analyzed by PrestoBlue assay. Immunofluorescence was used to observe Cx43 localization and expression. aCT1 (200 μM) alone did not significantly decrease cell viability in TLM1 cells, whereas BBI (400 μg/ml) alone significantly decreased the TLM1 viability. Combined treatment with both aCT1 (200 μM) and BBI (400 μg/ml) significantly decreased cell viability in TLM1 cells. Cx43 expression, as identified by immunostainings in TLM1 cells, was increased in the cell membrane after the combination treatment with BBI and aCT1. This dual treatment can be combined to achieve the anticancer activity, possibly by increasing Cx 43 expression and affecting Cx43 migration to the cell membrane. In conclusion, a treatment strategy targeting Cx43 with BBI and aCT1 may possibly lead to new effective therapies for canine OMM.Item How old is too old? In vivo engraftment of human peripheral blood stem cells cryopreserved for up to 18 years - implications for clinical transplantation and stability programs(Baishideng, 2020-05-16) Underwood, John; Rahim, Mahvish; West, Carijo; Britton, Rebecca; Skipworth, Elaine; Graves, Vicki; Sexton, Steven; Harris, Hillary; Schwering, Dave; Sinn, Anthony; Pollok, Karen E.; Robertson, Kent A.; Goebel, W. Scott; Hege, Kerry M.; Pediatrics, School of MedicineBACKGROUND Peripheral blood stem cells (PBSC) are commonly cryopreserved awaiting clinical use for hematopoietic stem cell transplant. Long term cryopreservation is commonly defined as five years or longer, and limited data exists regarding how long PBSC can be cryopreserved and retain the ability to successfully engraft. Clinical programs, stem cell banks, and regulatory and accrediting agencies interested in product stability would benefit from such data. Thus, we assessed recovery and colony forming ability of PBSC following long-term cryopreservation as well as their ability to engraft in NOD/SCID/IL-2Rγnull (NSG) mice. AIM To investigate the in vivo engraftment potential of long-term cryopreserved PBSC units. METHODS PBSC units which were collected and frozen using validated clinical protocols were obtained for research use from the Cellular Therapy Laboratory at Indiana University Health. These units were thawed in the Cellular Therapy Laboratory using clinical standards of practice, and the pre-freeze and post-thaw characteristics of the units were compared. Progenitor function was assessed using standard colony-forming assays. CD34-selected cells were transplanted into immunodeficient mice to assess stem cell function. RESULTS Ten PBSC units with mean of 17 years in cryopreservation (range 13.6-18.3 years) demonstrated a mean total cell recovery of 88% ± 12% (range 68%-110%) and post-thaw viability of 69% ± 17% (range 34%-86%). BFU-E growth was shown in 9 of 10 units and CFU-GM growth in 7 of 10 units post-thaw. Immunodeficient mice were transplanted with CD34-selected cells from four randomly chosen PBSC units. All mice demonstrated long-term engraftment at 12 wk with mean 34% ± 24% human CD45+ cells, and differentiation with presence of human CD19+, CD3+ and CD33+ cells. Harvested bone marrow from all mice demonstrated growth of erythroid and myeloid colonies. CONCLUSION We demonstrated engraftment of clinically-collected and thawed PBSC following cryopreservation up to 18 years in NSG mice, signifying likely successful clinical transplantation of PBSC following long-term cryopreservation.Item Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes(MDPI, 2024-02-18) da Fonseca, Ivone Izabel Mackowiak; Nagamine, Marcia Kazumi; Sato, Ayami; Rossatto, Carlos Alberto, Jr.; Yeh, Elizabeth Shinmay; Dagli, Lucia Zaidan; Pharmacology and Toxicology, School of MedicineMammary cancer is highly prevalent in non-castrated female dogs. Cell-to-cell communication is an important mechanism to maintain homeostasis, and connexins are proteins that assemble to form the communicating gap junctions. In many cancers, communication capacity is reduced; several approaches are being tested in order to increase the communication capacity in cancer cells and, therefore, alter their viability. This study analyzed the effects of the alpha-connexin carboxyl-terminal peptide (αCT1) on canine mammary non-neoplastic and neoplastic epithelial cells. Seven canine epithelial mammary cell lines were used. Among these, one was a normal canine epithelial mammary cell line (LOEC-NMG), two canine mammary adenomas (LOEC-MAd1 and LOEC-MAd2), and four canine mammary adenocarcinomas (LOEC-MCA1, LOEC-MCA2, LOEC-MCA3 and CF41). The αCT1 corresponds to a short Cx43 C-terminal sequence linked to an internalization sequence called the antennapedia. After 24 h of incubation, the medium containing different αCT1 peptide concentrations was added to the cells, and only the culture medium was used for control. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to quantify cell viability before treatment and 48, 72, and 96 h after the treatment. Results showed that the normal mammary epithelial cell line (LOEC-NMG) was resistant to treatment with αCT1, which is consistent with a previous study on human mammary cell lines. One of the adenoma cell lines (LOEC-MAd2) was also resistant to treatment with αCT1, although the other (LOEC-MAd1) was susceptible to treatment, mostly at 72 h after treatment. Regarding the four canine adenocarcinoma cell lines, they differ regarding the susceptibility to the treatment with αCT1. Three cell lines, canine mixed adenocarcinoma (LOEC-MCA1), canine complex adenocarcinoma (LOEC-MCA2), and commercial canine mammary adenocarcinoma cell line CF41, were susceptible to treatment with αCT1, while one canine mammary adenocarcinoma cell line (LOEC-MCA3) was resistant to treatment. In most αCT1 treated cell lines, Cx43 was strongly detected in cell membranes by immunofluorescence. We propose that αCT1 restored the cell-to-cell communication capacity of neoplastic cells and induced inhibitory effects on cell viability.