- Browse by Subject
Browsing by Subject "Ventral striatum"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Apathy Is Associated With Ventral Striatum Volume in Schizophrenia Spectrum Disorder(American Psychiatric Association, 2016) Roth, Robert M.; Garlinghouse, Matthew A.; Flashman, Laura A.; Koven, Nancy S.; Pendergrass, J. Cara; Ford, James C.; McAllister, Thomas W.; Saykin, Andrew J.; Psychiatry, School of MedicineApathy is prevalent in schizophrenia, but its etiology has received little investigation. The ventral striatum (VS), a key brain region involved in motivated behavior, has been implicated in studies of apathy. We therefore evaluated whether apathy is associated with volume of the VS on MRI in 23 patients with schizophrenia using voxel-based morphometry. Results indicated that greater self-reported apathy severity was associated with smaller volume of the right VS even when controlling for age, gender, depression, and total gray matter volume. The finding suggests that apathy is related to abnormality of brain circuitry subserving motivated behavior in patients with schizophrenia.Item Brain response in heavy drinkers during cross-commodity alcohol and money discounting with potentially real rewards: A preliminary study(Elsevier, 2023-07-06) Lungwitz, Elizabeth A.; Dzemidzic, Mario; Shen, Yitong I.; Plawecki, Martin H.; Oberlin, Brandon G.; Psychiatry, School of MedicineBackground: Alcohol use disorder (AUD) is associated with exaggerated preference for immediate rewards, a candidate endophenotype for use disorders. Addiction symptomology is often well-described by the preference for immediate intoxication over other delayed prosocial rewards. We measured brain activation in AUD-implicated regions during a cross-commodity delay discounting (CCD) task with choices for immediate alcohol and delayed money. Methods: Heavy drinkers (n=24) experienced a brief intravenous alcohol infusion prime, regained sobriety, then chose between 'One Shot' and delayed money in an adjusting delay CCD task (sober and intoxicated); also during fMRI (sober). Participants also performed a behavioral sensation seeking task and completed self-report inventories of other risk factors. We assessed brain activation to choices representing immediate intoxication versus delayed money rewards in a priori regions of interest defined within the framework of Addictions NeuroImaging Assessment. Results: Activation to CCD choice versus control trials activated paralimbic and ventral frontal cortical regions, including orbital and medial prefrontal cortex, posterior cingulate/retrosplenial cortex, angular and superior frontal gyri. We detected no differences between immediate or delayed choices. Left medial orbitofrontal cortex activation correlated with alcohol-induced wanting for alcohol; females showed greater activation than males. Behavioral sensation seeking correlated with right nucleus accumbens task engagement. Conclusions: Alcohol decision-making elicited activation in regions governing reward, introspection, and executive decision-making in heavy drinkers, demonstrating the utility of laboratory tasks designed to better model real-world choice. Our findings suggest that the brain processes subserving immediate and delayed choices are mostly overlapping, even with varied commodities.Item Missing motoric manipulations: rethinking the imaging of the ventral striatum and dopamine in human reward(Springer, 2019-04) Kareken, David A.; Neurology, School of MedicineHuman neuroimaging studies of natural rewards and drugs of abuse frequently assay the brain’s response to stimuli that, through Pavlovian learning, have come to be associated with a drug’s rewarding properties. This might be characterized as a ‘sensorial’ view of the brain’s reward system, insofar as the paradigms are designed to elicit responses to a reward’s (drug’s) sight, aroma, or flavor. A different field of research nevertheless suggests that the mesolimbic dopamine system may also be critically involved in the motor behaviors provoked by such stimuli. This brief review and commentary surveys some of the preclinical data supporting this more “efferent” (motoric) view of the brain’s reward system, and discusses what such findings might mean for how human brain imaging studies of natural rewards and drugs of abuse are designed.Item The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands(Elsevier, 2022) Howland, John G.; Ito, Rutsuko; Lapish, Christopher C.; Villaruel, Franz R.; Psychology, School of ScienceEmerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.