ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Vascular remodeling"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Differentiated Smooth Muscle Cells Generate a Subpopulation of Resident Vascular Progenitor Cells in the Adventitia Regulated by Klf4
    (American Heart Association, 2017-01-20) Majesky, Mark W.; Horita, Henrick; Ostriker, Allison; Lu, Sizhao; Regan, Jenna N.; Bagchi, Ashim; Dong, Xiu Rong; Poczobutt, Joanna; Nemenoff, Raphael A.; Weiser-Evans, Mary C.M.; Medicine, School of Medicine
    RATIONALE: The vascular adventitia is a complex layer of the vessel wall consisting of vasa vasorum microvessels, nerves, fibroblasts, immune cells, and resident progenitor cells. Adventitial progenitors express the stem cell markers, Sca1 and CD34 (adventitial sca1-positive progenitor cells [AdvSca1]), have the potential to differentiate in vitro into multiple lineages, and potentially contribute to intimal lesions in vivo. OBJECTIVE: Although emerging data support the existence of AdvSca1 cells, the goal of this study was to determine their origin, degree of multipotency and heterogeneity, and contribution to vessel remodeling. METHODS AND RESULTS: Using 2 in vivo fate-mapping approaches combined with a smooth muscle cell (SMC) epigenetic lineage mark, we report that a subpopulation of AdvSca1 cells is generated in situ from differentiated SMCs. Our data establish that the vascular adventitia contains phenotypically distinct subpopulations of progenitor cells expressing SMC, myeloid, and hematopoietic progenitor-like properties and that differentiated SMCs are a source to varying degrees of each subpopulation. SMC-derived AdvSca1 cells exhibit a multipotent phenotype capable of differentiating in vivo into mature SMCs, resident macrophages, and endothelial-like cells. After vascular injury, SMC-derived AdvSca1 cells expand in number and are major contributors to adventitial remodeling. Induction of the transcription factor Klf4 in differentiated SMCs is essential for SMC reprogramming in vivo, whereas in vitro approaches demonstrate that Klf4 is essential for the maintenance of the AdvSca1 progenitor phenotype. CONCLUSIONS: We propose that generation of resident vascular progenitor cells from differentiated SMCs is a normal physiological process that contributes to the vascular stem cell pool and plays important roles in arterial homeostasis and disease.
  • Loading...
    Thumbnail Image
    Item
    Emerging Epigenetic Targets and Their Molecular Impact on Vascular Remodeling in Pulmonary Hypertension
    (MDPI, 2024-01-28) Ranasinghe, A. Dushani C. U.; Tennakoon, T. M. Parinda B.; Schwarz, Margaret A.; Pediatrics, School of Medicine
    Pulmonary Hypertension (PH) is a terminal disease characterized by severe pulmonary vascular remodeling. Unfortunately, targeted therapy to prevent disease progression is limited. Here, the vascular cell populations that contribute to the molecular and morphological changes of PH in conjunction with current animal models for studying vascular remodeling in PH will be examined. The status quo of epigenetic targeting for treating vascular remodeling in different PH subtypes will be dissected, while parallel epigenetic threads between pulmonary hypertension and pathogenic cancer provide insight into future therapeutic PH opportunities.
  • Loading...
    Thumbnail Image
    Item
    Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in Kv channels
    (Springer, 2021-05-20) Goodwill, Adam G.; Baker, Hana E.; Dick, Gregory M.; McCallinhart, Patricia E.; Bailey, Chastidy A.; Brown, Scott M.; Man, Joshua J.; Tharp, Darla L.; Clark, Hannah E.; Blaettner, Bianca S.; Jaffe, Iris Z.; Bowles, Douglas K.; Trask, Aaron J.; Tune, Johnathan D.; Bender, Shawn B.; Anatomy, Cell Biology and Physiology, School of Medicine
    Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Whether MR blockade improves in vivo regulation of coronary flow, a process involving voltage-dependent K+ (Kv) channel activation, or reduces coronary structural remodeling in obesity is unclear. Thus, the goals of this investigation were to determine the effects of obesity on coronary responsiveness to reductions in arterial PO2 and potential involvement of Kv channels and whether the benefit of MR blockade involves improved coronary Kv function or altered passive structural properties of the coronary microcirculation. Hypoxemia increased coronary blood flow similarly in lean and obese swine; however, baseline coronary vascular resistance was significantly higher in obese swine. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. Chronic MR inhibition in obese swine normalized baseline coronary resistance, did not influence hypoxemic coronary vasodilation, and did not restore coronary Kv function (assessed in vivo, ex vivo, and via patch clamping). Lastly, MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening.
  • Loading...
    Thumbnail Image
    Item
    Regression of Hepatic Fibrosis and Evolution of Cirrhosis: A Concise Review
    (Wolters Kluwer, 2021-11) Khan, Shahbaz; Saxena, Romil; Pathology and Laboratory Medicine, School of Medicine
    Fibrosis is not a unidirectional, linear process, but a dynamic one resulting from an interplay of fibrogenesis and fibrolysis depending on the extent and severity of a biologic insult, or lack thereof. Regression of fibrosis has been documented best in patients treated with phlebotomies for hemochromatosis, and after successful suppression and eradication of chronic hepatitis B and C infections. This evidence mandates a reconsideration of the term “cirrhosis,” which implies an inevitable progression towards liver failure. Furthermore, it also necessitates a staging system that acknowledges the bidirectional nature of evolution of fibrosis, and has the ability to predict if the disease process is progressing or regressing. The Beijing classification attempts to fill this gap in contemporary practice. It is based on microscopic features termed “the hepatic repair complex,” defined originally by Wanless and colleagues. The elements of the hepatic repair complex represent the 3 processes of fragmentation and regression of scar, vascular remodeling (resolution), and parenchymal regeneration. However, regression of fibrosis does not imply resolution of cirrhosis, which is more than just a stage of fibrosis. So far, there is little to no evidence to suggest that large regions of parenchymal extinction can be repopulated by regenerating hepatocytes. Similarly, the vascular lesions of cirrhosis persist, and there is no evidence of complete return to normal microcirculation in cirrhotic livers. In addition, the risk of hepatocellular carcinoma is higher compared with the general population and these patients need continued screening and surveillance.
  • Loading...
    Thumbnail Image
    Item
    Signal Transduction during Metabolic and Inflammatory Reprogramming in Pulmonary Vascular Remodeling
    (MDPI, 2022-02-22) Gomes, Marta T.; Bai, Yang; Potje, Simone R.; Zhang, Lu; Lockett, Angelia D.; Machado, Roberto F.; Medicine, School of Medicine
    Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University