ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Variation"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Defining dysfunction: natural selection, design, and drawing a line.
    (Philosophy of Science, 2007-07) Schwartz, Peter H.
    Accounts of the concepts of function and dysfunction have not adequately explained what factors determine the line between low-normal function and dysfunction. I call the challenge of doing so the line-drawing problem. Previous approaches emphasize facts involving the action of natural selection (Wakefield 1992a, 1999a, 1999b) or the statistical distribution of levels of functioning in the current population (Boorse 1977, 1997). I point out limitations of these two approaches and present a solution to the line-drawing problem that builds on the second one.
  • Loading...
    Thumbnail Image
    Item
    Seasonal variation in children with developmental dysplasia of the hip
    (Sage, 2014) Loder, Randall T.; Shafer, Cody; Orthopaedic Surgery, School of Medicine
    Background: It has been postulated that developmental dysplasia of the hip (DDH) is more frequent in infants born in the winter months. It was the purpose of this study to ascertain if there was any seasonal variation in DDH at the author's institution and compare/contrast our results with those in the literature using rigorous mathematical fitting. Methods: All children with DDH treated at the author's institution from 1993 to 2012 were identified. The month of birth was recorded and temporal variation was analyzed using cosinor analysis. Similar data from the literature was analyzed. Results: There were 424 children (363 girls, 61 boys). An additional 22,936 children were added from the literature for a total of 23,360. Pearson's Chi-square test demonstrated a non-uniform distribution in the month of birth for both our 424 children as well as the combined literature series in both the Northern and Southern hemispheres. Cosinor analysis of the 424 children demonstrated double peaks in mid-March and mid-October. For the entire 23,360 children, no seasonal variation was observed in 2,205 (9.4 %), a single winter peak in 16,425 (70.3 %), a single summer peak in 1,280 (5.5 %), and double peaks in the spring and autumn in 3,450 (14.8 %). Conclusions: This study partly supports the hypothesis of tight clothing/cold temperature as one factor in the etiology of DDH with the tighter clothing/swaddling increasing the risk of DDH. However ~20 % of the DDH births demonstrated a non-winter peak. The single summer and double spring/autumn peaks, as well as in those series where no seasonal variation was noted, refutes the cold winter clothing hypothesis. Perhaps these different patterns in seasonal variation represent the heterogeneity of the genetic factors in DDH interacting with external factors (temperature and clothing) and internal factors (metabolic). Further study will be required to understand these different patterns in DDH seasonal variation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University