- Browse by Subject
Browsing by Subject "Vagus nerve stimulation"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cervical vagal nerve stimulation activates the stellate ganglion in ambulatory dogs(Synapse, 2015-03-24) Rhee, Kyoung-Suk; Hsueh, Chia-Hsiang; Hellyer, Jessica A.; Park, Hyung Wook; Lee, Young Soo; Garlie, Jason; Onkka, Patrick; Doytchinova, Anisiia T.; Garner, John B.; Patel, Jheel; Chen, Lan S.; Fishbein, Michael C.; Everett 4th, Thomas; Lin, Shien-Fong; Chen, Peng-Sheng; Department of Neurology, IU School of MedicineBACKGROUND AND OBJECTIVES: Recent studies showed that, in addition to parasympathetic nerves, cervical vagal nerves contained significant sympathetic nerves. We hypothesized that cervical vagal nerve stimulation (VNS) may capture the sympathetic nerves within the vagal nerve and activate the stellate ganglion. MATERIALS AND METHODS: We recorded left stellate ganglion nerve activity (SGNA), left thoracic vagal nerve activity (VNA), and subcutaneous electrocardiogram in seven dogs during left cervical VNS with 30 seconds on-time and 30 seconds off time. We then compared the SGNA between VNS on and off times. RESULTS: Cervical VNS at moderate (0.75 mA) output induced large SGNA, elevated heart rate (HR), and reduced HR variability, suggesting sympathetic activation. Further increase of the VNS output to >1.5 mA increased SGNA but did not significantly increase the HR, suggesting simultaneous sympathetic and parasympathetic activation. The differences of integrated SGNA and integrated VNA between VNS on and off times (ΔSGNA) increased progressively from 5.2 mV-s {95% confidence interval (CI): 1.25-9.06, p=0.018, n=7} at 1.0 mA to 13.7 mV-s (CI: 5.97-21.43, p=0.005, n=7) at 1.5 mA. The difference in HR (ΔHR, bpm) between on and off times was 5.8 bpm (CI: 0.28-11.29, p=0.042, n=7) at 1.0 mA and 5.3 bpm (CI 1.92 to 12.61, p=0.122, n=7) at 1.5 mA. CONCLUSION: Intermittent cervical VNS may selectively capture the sympathetic components of the vagal nerve and excite the stellate ganglion at moderate output. Increasing the output may result in simultaneously sympathetic and parasympathetic capture.Item Fractal Microelectrodes for More Energy-Efficient Cervical Vagus Nerve Stimulation(Wiley, 2023) Lim, Jongcheon; Eiber, Calvin D.; Sun, Anina; Maples, Amanda; Powley, Terry L.; Ward, Matthew P.; Lee, Hyowon; Medicine, School of MedicineVagus nerve stimulation (VNS) has the potential to treat various peripheral dysfunctions, but the traditional cuff electrodes for VNS are susceptible to off-target effects. Microelectrodes may enable highly selective VNS that can mitigate off-target effects, but they suffer from the increased impedance. Recent studies on microelectrodes with non-Euclidean geometries have reported higher energy efficiency in neural stimulation applications. These previous studies use electrodes with mm/cm-scale dimensions, mostly targeted for myelinated fibers. This study evaluates fractal microelectrodes for VNS in a rodent model (N = 3). A thin-film device with fractal and circle microelectrodes is fabricated to compare their neural stimulation performance on the same radial coordinate of the nerve. The results show that fractal microelectrodes can activate C-fibers with up to 52% less energy (p = 0.012) compared to circle microelectrodes. To the best of the knowledge, this work is the first to demonstrate a geometric advantage of fractal microelectrodes for VNS in vivo.Item In vivo peripheral nerve activation using sinusoidal low-frequency alternating currents(Wiley, 2022) Alhawwash, Awadh; Muzquiz, M. Ivette; Richardson, Lindsay; Vetter, Christian; Smolik, Macallister; Goodwill, Adam; Yoshida, Ken; Biomedical Engineering, School of Engineering and TechnologyBackground: The sinusoidal low-frequency alternating current (LFAC) waveform was explored recently as a novel means to evoke nerve conduction block. In the present work, we explored whether increasing the amplitude of the LFAC waveform results in nerve fiber activation in autonomic nerves. In-silico methods and preliminary work in somatic nerves indicated a potential frequency dependency on the threshold of activation. The Hering-Breuer (HB) reflex was used as a biomarker to detect cervical vagus nerve activation. Methods: Experiments were conducted in isoflurane-anesthetized swine (n = 5). Two stimulating bipolar cuff electrodes and a tripolar recording cuff electrode were implanted on the left vagus nerve. To ensure the electrical stimulation affects only the afferent pathways, the nerve was crushed caudal to the electrodes to eliminate cardiac effects. (1) Standard pulse stimulation (Vstim) using a monophasic train of pulses was applied through the caudal electrode to elicit HB reflex and to identify the activated nerve fiber type. (2) Continuous sinusoidal LFAC waveform with a frequency ranging from 5 through 20 Hz was applied to the rostral electrode without Vstim to explore the activation thresholds at each LFAC frequency. In both cases, the activation of nerve fibers was detected by a HB reflex-induced reduction in the breathing rate. Results: LFAC was found to be capable of eliciting an HB response. The LFAC activation thresholds were found to be frequency-dependent. The HB threshold was 1.02 ± 0.3 mAp at 5 Hz, 0.66 ± 0.3 mAp at 10 Hz, and 0.44 ± 0.2 mAp at 20 Hz. In comparison, it was 0.7 ± 0.47 mA for a 100 μs pulse. The LFAC amplitude was within the linear limits of the electrode interface. Damage to the cuff electrodes or the nerve tissues was not observed. Analysis of Vstim-based compound nerve action potentials (CNAP) indicated that the decrease in breathing rate was found to be correlated with the activation of slower components of the CNAP suggesting that LFAC reached and elicited responses from these slower fibers associated with afferents projecting to the HB response. Conclusions: These results suggest the feasibility of the LFAC waveform at 5, 10, and 20 Hz to activate autonomic nerve fibers and potentially provide a new modality to the neurorehabilitation field.