- Browse by Subject
Browsing by Subject "VOC"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway(Wiley, 2019-10-04) Wang, Luqi; Wang, Yue; Chen, Andy; Teli, Meghana; Kondo, Rika; Jalali, Aydin; Fan, Yao; Liu, Shengzhi; Zhao, Xinyu; Siegel, Amanda; Minami, Kazumasa; Agarwal, Mangilal; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyBone is a frequent site of metastasis from breast cancer, and a desirable drug could suppress tumor growth as well as metastasis-linked bone loss. Currently, no drug is able to cure breast cancer–associated bone metastasis. In this study, we focused on statins that are known to inhibit cholesterol production and act as antitumor agents. After an initial potency screening of 7 U.S. Food and Drug Administration–approved statins, we examined pitavastatin as a drug candidate for inhibiting tumor and tumor-induced bone loss. In vitro analysis revealed that pitavastatin acted as an inhibitor of tumor progression by altering stress to the endoplasmic reticulum, down-regulating peroxisome proliferator–activated receptor γ, and reducing Snail and matrix metalloproteinase 9. In bone homeostasis, it blocked osteoclast development by suppressing transcription factors c-Fos and JunB, but stimulated osteoblast mineralization by regulating bone morphogenetic protein 2 and p53. In a mouse model, pitavastatin presented a dual role in tumor inhibition in the mammary fat pad, as well as in bone protection in the osteolytic tibia. In mass spectrometry–based analysis, volatile organic compounds (VOCs) that were linked to lipid metabolism and cholesterol synthesis were elevated in mice from the tumor-grown placebo group. Notably, pitavastatin-treated mice reduced specific VOCs that are linked to lipid metabolites in the mevalonate pathway. Collectively, the results lay a foundation for further investigation of pitavastatin’s therapeutic efficacy in tumor-induced bone loss, as well as VOC-based diagnosis of tumor progression and treatment efficacy.—Wang, L., Wang, Y., Chen, A., Teli, M., Kondo, R., Jalali, A., Fan, Y., Liu, S., Zhao, X., Siegel, A., Minami, K., Agarwal, M., Li, B.-Y., Yokota, H. Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway.Item Taste and Odor Event Dynamics of a Midwestern Freshwater Reservoir(2020-11) Howard, Chase Steven; Druschel, Gregory K.; Jacinthe, Pierre-André; Picard, Christine J.Eagle Creek Reservoir (ECR), located in the Midwestern U.S., is a freshwater limnic system plagued by seasonal Harmful Algal Blooms (HABs) which generate water-fouling Geosmin (GSM) and 2-Methylisoborneol (MIB) Taste and Odor (T&O) compounds. Past investigations of T&O event dynamics have identified Actinomycetes as responsible for MIB production and several genera of cyanobacteria for GSM production. During 2018, a temporally and spatially expansive sampling regimen of the reservoir was carried out and a battery of biological, chemical, physical, and hyperspectral experiments performed. The resulting data was analyzed using time series, cross-correlation, lag time, and multivariate analyses as well as machine learning algorithms to pick apart and interrogate any relationships between HABs, T&O events, and environmental parameters. The results show that local weather and watershed conditions exert significant control over the state of the reservoir and the behavior of the algal community. GSM and MIB peaked during early May under well-mixed, cold, and nutrient-rich water column conditions, then declined under summer thermal stratification before making a small resurgence during late season mixing. Bloom die-off and decay was effectively ruled out as a mechanism controlling T&O concentrations, and no links were found between T&O concentrations and algal biomass. Strong evidence was found that GSM/MIB concentrations were a response by bloom microbes to changing nutrient conditions within the reservoir, and it was determined that nutrient fluxes from the watershed 30-40 days prior to peak T&O concentrations are likely instrumental in the development of the slow- ix growing microbes characteristic of the reservoir. Attempts were made to assess spatial and temporal variability but no significant spatial differences were identified; differences between sampling sites were far smaller than differences between different sampling dates. The findings here add to the growing body of literature showing T&O and HAB dynamics are more closely linked to the relative abundance and speciation of nutrients than other parameters. Additionally, these findings carry important implications for the management of ECR and other similar freshwater reservoirs while highlighting the importance of reducing watershed eutrophication.