- Browse by Subject
Browsing by Subject "VEGF"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Combinational treatment approach for traumatic spinal cord injury(2016-03-02) Walker, Melissa J.; Xu, Xiao-MingSpinal cord injury (SCI) is devastating and debilitating, and currently no effective treatments exist. Approximately, 12,000 new cases of SCI occur annually in the United States alone. The central nervous system has very low repair capability after injury, due to the toxic environment in the injured tissue. After spinal cord trauma, ruptured blood vessels cause neighboring cells and tissues to be deprived of oxygen and nutrients, and result in the accumulation of carbon dioxide and waste. New blood vessels form spontaneously after SCI, but then retract as the injured tissue forms a cavity. Thus, the newly formed vasculature likely retracts because it lacks a structural support matrix to extend across the lesion. Currently, in the field of spinal cord injury, combinational treatment approaches appear to hold the greatest therapeutic potential. Therefore, the aim of these studies was to transplant a novel, non-immunogenic, bioengineered hydrogel, into the injured spinal cord to serve as both a structural scaffold (for blood vessels, axons, and astrocytic processes), as well as a functional matrix with a time-controlled release of growth factors (Vascular endothelial growth factor, VEGF; Glial cell line-derived neurotrophic factor, GDNF). The benefit of this hydrogel is that it remains liquid at cooler temperatures, gels to conform to the space surrounding it at body temperature, and was designed to have a similar tensile strength as spinal cord tissue. This is advantageous due to the non-uniformity of lesion cavities following contusive spinal cord injury. Hydrogel alone and combinational treatment groups significantly improved several measures of functional recovery and showed modest histological improvements, yet did not provoke any increased sensitivity to a thermal stimulus. Collectively, these findings suggest that with further investigation, hydrogel along with a combination of growth factors might be a useful therapeutic approach for repairing the injured spinal cord.Item Disease progression pathways of wet AMD: opportunities for new target discovery(Taylor & Francis, 2022) Wolf, Amber T.; Harris, Alon; Oddone, Francesco; Siesky, Brent; Verticchio Vercellin, Alice; Ciulla, Thomas A.; Ophthalmology, School of MedicineIntroduction: Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among people age 60 years or older in developed countries. Current standard-of-care anti-vascular endothelial growth factor (VEGF) therapy, which inhibits angiogenesis and vascular permeability, has been shown to stabilize choroidal neovascularization and increase visual acuity in neovascular AMD. However, therapeutic limitations of anti-VEGF therapy include limited durability with consequent need for frequent intravitreal injections, and a ceiling of efficacy. Current strategies under investigation include targeting VEGF-C and VEGF-D, integrins, tyrosine kinase receptors, and the Tie2/angiopoietin-2 pathway. A literature search was conducted through November 30, 2021 on PubMed, Medline, Google Scholar, and associated digital platforms with the following keywords: wet macular degeneration, age-related macular degeneration, therapy, VEGF-A, VEGF-C, VEGF-D, integrins, Tie2/Ang2, and tyrosine kinase inhibitors. Areas covered: The authors provide a comprehensive review of AMD disease pathways and mechanisms involved in wet AMD as well as novel targets for future therapies. Expert opinion: With novel targets and advancements in drug delivery, there is potential to address treatment burden and to improve outcomes for patients afflicted with neovascular AMD.Item Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia(Elsevier, 2009-04) Erwin, Graham S.; Crisostomo, Paul R.; Wang, Yue; Wang, Meijing; Markel, Troy A.; Guzman, Mike; Sando, Ian C.; Sharma, Rahul; Meldrum, Daniel R.; Surgery, School of MedicineBACKGROUND: Stem cell therapy is a promising treatment modality for injured cardiac tissue. A novel mechanism for this cardioprotection may include paracrine actions. Our lab has recently shown that gender differences exist in mesenchymal stem cell (MSC) paracrine function. Estrogen is implicated in the cardioprotection found in females. It remains unknown whether 17beta-estradiol (E2) affects MSC paracrine function and whether E2-treated MSCs may better protect injured cardiac tissue. We hypothesize that E2-exposed MSCs infused into hearts prior to ischemia may demonstrate increased vascular endothelial growth factor (VEGF) production and greater protection of myocardial function compared to untreated MSCs. MATERIALS AND METHODS: Untreated and E2-treated MSCs were isolated, cultured, and plated and supernatants were harvested for VEGF assay (enzyme-linked immunosorbent assay). Adult male Sprague-Dawley rat hearts (n = 13) were isolated and perfused via Langendorff model and subjected to 15 min equilibration, 25 min warm global ischemia, and 40 min reperfusion. Hearts were randomly assigned to perfusate vehicle, untreated male MSC, or E2-treated male MSC. Transcoronary delivery of 1 million MSCs was performed immediately prior to ischemia in experimental hearts. RESULTS: E2-treated MSCs provoked significantly more VEGF production than untreated MSCs (933.2 +/- 64.9 versus 595.8 +/- 10.7 pg/mL). Postischemic recovery of left ventricular developed pressure was significantly greater in hearts infused with E2-treated MSCs (66.9 +/- 3.3%) than untreated MSCs (48.7 +/- 3.7%) and vehicle (28.9 +/- 4.6%) at end reperfusion. There was also greater recovery of the end diastolic pressure with E2-treated MSCs than untreated MSCs and vehicle. CONCLUSIONS: Preischemic infusion of MSCs protects myocardial function and viability. E2-treated MSCs may enhance this paracrine protection, which suggests that ex vivo modification of MSCs may improve therapeutic outcome.Item Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus(Nature Publishing Group, 2016-05-31) Shim, Joon W.; Sandlund, Johanna; Hameed, Mustafa Q.; Blazer-Yost, Bonnie L.; Zhou, Feng C.; Klagsbrun, Michael; Madsen, Joseph R.; Department of Anatomy & Cell Biology, IU School of MedicineHeparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.Item GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis(Impact Journals, LLC, 2016-06-14) Zhong, Zhaohui; Gu, Huiying; Peng, Jirun; Wang, Wenzheng; Johnstone, Brian H.; March, Keith L.; Farlow, Martin R.; Du, Yansheng; Department of Neurology, School of MedicineAdipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered that glial-derived neurotrophic factor (GDNF) is a key mediator for endothelial cell network formation. It was found that both GDNF alone or present in ASC-conditioned medium (ASC-CM) stimulated capillary network formation by using human umbilical vein endothelial cells (HUVECs) and such an effect was totally independent of vascular endothelial growth factor (VEGF) activity. Additionally, we showed stimulation of capillary network formation by GDNF, but not VEGF, could be blocked by the Ret (rearranged during transfection) receptor antagonist RPI-1, a GDNF signaling inhibitor. Furthermore, GDNF were found to be overexpressed in cancer cells that were resistant to the anti-angiogenic treatment using the VEGF antibody. Cancer cells in the liver hepatocellular carcinoma (HCC), a non-nervous related cancer, highly overexpressed GDNF as compared to normal liver cells. Our data strongly suggest that, in addition to VEGF, GDNF secreted by ASC and HCC cells, may be another important factor promoting pathological neovascularization. Thus, GDNF may be a potential therapeutic target for HCC and obesity treatments.Item Low Bone Turnover in Chronic Kidney Disease is associated with decreased VEGF-A expression and osteoblast differentiation(Karger, 2015-08) Chen, Neal X.; O'Neill, Kalisha D.; Allen, Matthew R.; Department of Medicine, IU School of MedicineBackground: Low turnover bone (low bone formation rates (BFRs)) with decreased osteoblast number is common in patients with chronic kidney disease (CKD) and attributed to ‘over-suppression' of the parathyroid hormone (PTH) despite supra-physiologic levels. An alternative hypothesis is abnormal osteoblast differentiation, resulting in low BFRs due to reduced VEGF-A. Methods: We analyzed the expression of VEGF-A and mesenchymal stem cell (MSC) differentiation factors in freshly isolated bone marrow (BM) cells, and in BM cell-derived MSC in rats with different levels of BFRs and PTH (modulated by calcium and zoledronic acid). The regulators of VEGF in MSC were also determined. Results: VEGF-A expression was reduced in the BM cells from CKD vs. normal animals (p < 0.02). In BM-derived MSC from CKD, there were decreased osteoblast transcription factors and mineralization. In CKD animals, the BM VEGF-A expression was positively correlated with BFR (r = 0.80, p < 0.001). Reducing BFRs in CKD animals led to reductions in VEGF-A expression and osteoblast transcription factors regardless of the PTH level. We therefore examined other regulators of VEGF-A and found decreased expression of hypoxia-inducible factor-1α and the master transcription factor of antioxidants nuclear factor (erythroid-derived 2)-like 2 in CKD animals with low PTH. Conclusion: Low BFRs in CKD are associated with a basal decrease in VEGF-A expression in BM that may be driven by altered hypoxia and oxidative stress.Item Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization(Association for Research in Vision and Ophthalmology, 2018-05-01) Zhang, Hanfang; Hudson, Farlyn Z.; Xu, Zhimin; Tritz, Rebekah; Rojas, Modesto; Patel, Chintan; Haigh, Stephen B.; Bordán, Zsuzsanna; Ingram, David A.; Fulton, David J.; Weintraub, Neal L.; Caldwell, Ruth B.; Stansfield, Brian K.; Medicine, School of MedicinePurpose: Neurofibromatosis type 1 (NF1) is the result of inherited mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. Eye manifestations are common in NF1 with recent reports describing a vascular dysplasia in the retina and choroid. Common features of NF1 retinopathy include tortuous and dilated feeder vessels that terminate in capillary tufts, increased endothelial permeability, and neovascularization. Given the retinal vascular phenotype observed in persons with NF1, we hypothesize that preserving neurofibromin may be a novel strategy to control pathologic retinal neovascularization. Methods: Nf1 expression in human endothelial cells (EC) was reduced using small hairpin (sh) RNA and EC proliferation, migration, and capacity to form vessel-like networks were assessed in response to VEGF and hypoxia. Wild-type (WT), Nf1 heterozygous (Nf1+/-), and Nf1flox/+;Tie2cre pups were subjected to hyperoxia/hypoxia using the oxygen-induced retinopathy model. Retinas were analyzed quantitatively for extent of retinal vessel dropout, neovascularization, and capillary branching. Results: Neurofibromin expression was suppressed in response to VEGF, which corresponded with activation of Mek-Erk and PI3-K-Akt signaling. Neurofibromin-deficient EC exhibited enhanced proliferation and network formation in response to VEGF and hypoxia via an Akt-dependent mechanism. In response to hyperoxia/hypoxia, Nf1+/- retinas exhibited increased vessel dropout and neovascularization when compared with WT retinas. Neovascularization was similar between Nf1+/- and Nf1flox/+;Tie2cre retinas, but capillary drop out in Nf1flox/+;Tie2cre retinas was significantly reduced when compared with Nf1+/- retinas. Conclusions: These data suggest that neurofibromin expression is essential for controlling endothelial cell proliferation and retinal neovascularization and therapies targeting neurofibromin-deficient EC may be beneficial.Item Pancreatic Cyst Fluid Vascular Endothelial Growth Factor A and Carcinoembryonic Antigen: A Highly Accurate Test for the Diagnosis of Serous Cystic Neoplasm(Elsevier, 2017-07) Carr, Rosalie A.; Yip-Schneider, Michele T.; Dolejs, Scott; Hancock, Bradley A.; Wu, Huangbing; Radovich, Milan; Schmidt, C. Max; Surgery, School of MedicineBackground Accurate differentiation of pancreatic cystic lesions is important for early detection and prevention of pancreatic cancer, as well as avoidance of unnecessary surgical intervention. Serous cystic neoplasms (SCNs) have no malignant potential, but can mimic the following premalignant mucinous cystic lesions: mucinous cystic neoplasm and intraductal papillary mucinous neoplasm (IPMN). We recently identified vascular endothelial growth factor (VEGF)-A as a novel pancreatic fluid biomarker for SCN. We hypothesize that combining cyst fluid CEA with VEGF-A will improve the diagnostic accuracy of VEGF-A. Methods Pancreatic cyst/duct fluid was collected from consenting patients undergoing surgical cyst resection with corresponding pathologic diagnoses. Pancreatic fluid VEGF-A and CEA levels were detected by ELISA. Results One hundred and forty-nine patients with pancreatic cystic lesions met inclusion criteria. Pathologic diagnoses included pseudocyst (n = 14), SCN (n = 26), mucinous cystic neoplasm (n = 40), low-/moderate-grade IPMN (n = 34), high-grade IPMN (n = 20), invasive IPMN (n = 10), and solid pseudopapillary neoplasm (n = 5). Vascular endothelial growth factor A was significantly elevated in SCN cyst fluid compared with all other diagnoses (p < 0.001). With a threshold of >5,000 pg/mL, VEGF-A alone has 100% sensitivity and 83.7% specificity to distinguish SCNs from other cystic lesions. With a threshold of ≤10 ng/mL, CEA alone identifies SCN with 95.5% sensitivity and 81.5% specificity. Sensitivity and specificity of the VEGF-A/CEA combination are 95.5% and 100%, respectively. The c-statistic increased from 0.98 to 0.99 in the receiver operating characteristic analysis when CEA was added to VEGF-A alone. Conclusions Although VEGF-A alone is a highly accurate test for SCN, the combination of VEGF-A with CEA approaches the gold standard for pathologic diagnosis, importantly avoiding false positives. Patients with a positive test indicating benign SCN can be spared a high-risk surgical pancreatic resection.Item Rap1B promotes VEGF-induced endothelial permeability and is required for dynamic regulation of the endothelial barrier(The Company of Biologists, 2018-01-10) Lakshmikanthan, Sribalaji; Sobczak, Magdalena; Li Calzi, Sergio; Shaw, Lynn; Grant, Maria B.; Chrzanowska-Wodnicka, Magdalena; Ophthalmology, School of MedicineVascular endothelial growth factor (VEGF), a key angiogenic and permeability factor, plays an important role in new blood vessel formation. However, abnormal VEGF-induced VEGFR2 signaling leads to hyperpermeability. We have shown previously that Rap1, best known for promoting cell adhesion and vessel stability, is a critical regulator of VEGFR2-mediated angiogenic and shear-stress EC responses. To determine the role of Rap1 role in endothelial barrier dynamics, we examined vascular permeability in EC-specific Rap1A- and Rap1B-knockout mice, cell-cell junction remodeling and EC monolayer resistivity in Rap1-deficient ECs under basal, inflammatory or elevated VEGF conditions. Deletion of either Rap1 isoform impaired de novo adherens junction (AJ) formation and recovery from LPS-induced barrier disruption in vivo However, only Rap1A deficiency increased permeability in ECs and lung vessels. Interestingly, Rap1B deficiency attenuated VEGF-induced permeability in vivo and AJ remodeling in vitro Therefore, only Rap1A is required for the maintenance of normal vascular integrity. Importantly, Rap1B is the primary isoform essential for normal VEGF-induced EC barrier dissolution. Deletion of either Rap1 isoform protected against hyper permeability in the STZ-induced diabetes model, suggesting clinical implications for targeting Rap1 in pathologies with VEGF-induced hyperpermeability.Item Resistance to Systemic Agents in Renal Cell Carcinoma Predict and Overcome Genomic Strategies Adopted by Tumor(MDPI, 2019-06-14) Mollica, Veronica; Di Nunno, Vincenzo; Gatto, Lidia; Santoni, Matteo; Scarpelli, Marina; Cimadamore, Alessia; Lopez-Beltran, Antonio; Cheng, Liang; Battelli, Nicola; Montironi, Rodolfo; Massari, Francesco; Pathology & Laboratory Medicine, IU School of MedicineThe development of new systemic agents has led us into a "golden era" of management of metastatic renal cell carcinoma (RCC). Certainly, the approval of immune-checkpoint inhibitors and the combination of these with targeted compounds has irreversibly changed clinical scenarios. A deeper knowledge of the molecular mechanisms that correlate with tumor development and progression has made this revolution possible. In this amazing era, novel challenges are awaiting us in the clinical management of metastatic RCC. Of these, the development of reliable criteria which are able to predict tumor response to treatment or primary and acquired resistance to systemic treatments still remain an unmet clinical need. Thanks to the availability of data provided by studies evaluating genomic assessments of the disease, this goal may no longer be out of reach. In this review, we summarize current knowledge about genomic alterations related to primary and secondary resistance to target therapy and immune-checkpoint inhibitors in RCC.