- Browse by Subject
Browsing by Subject "Uncoupling"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Assessment of Neurovascular Uncoupling: APOE Status is a Key Driver of Early Metabolic and Vascular Dysfunction(bioRxiv, 2024-03-13) Onos, Kristen; Lin, Peter B.; Pandey, Ravi S.; Persohn, Scott A.; Burton, Charles P.; Miner, Ethan W.; Eldridge, Kierra; Nyandu Kanyinda, Jonathan; Foley, Kate E.; Carter, Gregory W.; Howell, Gareth R.; Territo, Paul R.; Neurology, School of MedicineBackground: Alzheimer's disease (AD) is the most common cause of dementia worldwide, with apolipoprotein ε4 (APOEε4) being the strongest genetic risk factor. Current clinical diagnostic imaging focuses on amyloid and tau; however, new methods are needed for earlier detection. Methods: PET imaging was used to assess metabolism-perfusion in both sexes of aging C57BL/6J, and hAPOE mice, and were verified by transcriptomics, and immunopathology. Results: All hAPOE strains showed AD phenotype progression by 8 mo, with females exhibiting the regional changes, which correlated with GO-term enrichments for glucose metabolism, perfusion, and immunity. Uncoupling analysis revealed APOEε4/ε4 exhibited significant Type-1 uncoupling (↓ glucose uptake, ↑ perfusion) at 8 and 12 mo, while APOEε3/ε4 demonstrated Type-2 uncoupling (↑ glucose uptake, ↓ perfusion), while immunopathology confirmed cell specific contributions. Discussion: This work highlights APOEε4 status in AD progression manifest as neurovascular uncoupling driven by immunological activation, and may serve as an early diagnostic biomarker.