- Browse by Subject
Browsing by Subject "Type 1 Diabetes Mellitus"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item APX3330 Promotes Neurorestorative Effects after Stroke in Type One Diabetic Rats(Buck Institute for Age Research, 2018-06-01) Yan, Tao; Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Yu, Peng; Ning, Ruizhuo; Qiao, Xiaoxi; Kelley, Mark R.; Chen, Jieli; Medicine, School of MedicineAPX3330 is a selective inhibitor of APE1/Ref-1 redox activity. In this study, we investigate the therapeutic effects and underlying mechanisms of APX3330 treatment in type one diabetes mellitus (T1DM) stroke rats. Adult male Wistar rats were induced with T1DM and subjected to transient middle cerebral artery occlusion (MCAo) and treated with either PBS or APX3330 (10mg/kg, oral gavage) starting at 24h after MCAo, and daily for 14 days. Rats were sacrificed at 14 days after MCAo and, blood brain barrier (BBB) permeability, ischemic lesion volume, immunohistochemistry, cell death assay, Western blot, real time PCR, and angiogenic ELISA array were performed. Compared to PBS treatment, APX3330 treatment of stroke in T1DM rats significantly improves neurological functional outcome, decreases lesion volume, and improves BBB integrity as well as decreases total vessel density and VEGF expression, while significantly increases arterial density in the ischemic border zone (IBZ). APX3330 significantly increases myelin density, oligodendrocyte number, oligodendrocyte progenitor cell number, synaptic protein expression, and induces M2 macrophage polarization in the IBZ of T1DM stroke rats. Compared to PBS treatment, APX3330 treatment significantly decreases plasminogen activator inhibitor type-1 (PAI-1), monocyte chemotactic protein-1 and matrix metalloproteinase 9 (MMP9) and receptor for advanced glycation endproducts expression in the ischemic brain of T1DM stroke rats. APX3330 treatment significantly decreases cell death and MMP9 and PAI-1 gene expression in cultured primary cortical neurons subjected to high glucose and oxygen glucose deprivation, compared to untreated control cells. APX3330 treatment increases M2 macrophage polarization and decreases inflammatory factor expression in the ischemic brain as well as promotes neuroprotective and neurorestorative effects after stroke in T1DM rats.Item Clinical trial data validate the C-peptide estimate model in type 1 diabetes(SpringerLink, 2020-04) Wentworth, John M.; Bediaga, Naiara G.; Gitelman, Stephen E.; Evans-Molina, Carmela; Gottlieb, Peter A.; Colman, Peter G.; Haller, Michael J.; Harrison, Leonard C.; Medicine, School of MedicineItem Excess BMI Accelerates Islet Autoimmunity in Older Children and Adolescents(American Diabetes Association, 2020-03) Ferrara-Cook, Christine; Geyer, Susan Michelle; Evans-Molina, Carmella; Libman, Ingrid M.; Becker, Dorothy J.; Gitelman, Stephen E.; Jose Redondo, Maria; Medicine, School of MedicineObjective: Sustained excess BMI increases the risk of type 1 diabetes (T1D) in autoantibody-positive relatives without diabetes of patients. We tested whether elevated BMI also accelerates the progression of islet autoimmunity before T1D diagnosis. Research design and methods: We studied 706 single autoantibody-positive pediatric TrialNet participants (ages 1.6-18.6 years at baseline). Cumulative excess BMI (ceBMI) was calculated for each participant based on longitudinally accumulated BMI ≥85th age- and sex-adjusted percentile. Recursive partitioning analysis and multivariable modeling defined the age cut point differentiating the risk for progression to multiple positive autoantibodies. Results: At baseline, 175 children (25%) had a BMI ≥85th percentile. ceBMI range was -9.2 to 15.6 kg/m2 (median -1.91), with ceBMI ≥0 kg/m2 corresponding to persistently elevated BMI ≥85th percentile. Younger age increased the progression to multiple autoantibodies, with age cutoff of 9 years defined by recursive partitioning analysis. Although ceBMI was not significantly associated with progression from single to multiple autoantibodies overall, there was an interaction with ceBMI ≥0 kg/m2, age, and HLA (P = 0.009). Among children ≥9 years old without HLA DR3-DQ2 and DR4-DQ8, ceBMI ≥0 kg/m2 increased the rate of progression from single to multiple positive autoantibodies (hazard ratio 7.32, P = 0.004) and conferred a risk similar to that in those with T1D-associated HLA haplotypes. In participants <9 years old, the effect of ceBMI on progression to multiple autoantibodies was not significant regardless of HLA type. Conclusions: These data support that elevated BMI may exacerbate islet autoimmunity prior to clinical T1D, particularly in children with lower risk based on age and HLA. Interventions to maintain normal BMI may prevent or delay the progression of islet autoimmunity.Item Gene expression signatures of target tissues in type 1 diabetes, lupus erythematosus, multiple sclerosis, and rheumatoid arthritis(American Association for the Advancement of Science, 2021-01-06) Szymczak, F.; Colli, M.L.; Mamula, M.J.; Evans-Molina, C.; Eizirik, D.L.; Medicine, School of MedicineAutoimmune diseases are typically studied with a focus on the immune system, and less attention is paid to responses of target tissues exposed to the immune assault. We presently evaluated, based on available RNA sequencing data, whether inflammation induces similar molecular signatures at the target tissues in type 1 diabetes, systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. We identified confluent signatures, many related to interferon signaling, indicating pathways that may be targeted for therapy, and observed a high (>80%) expression of candidate genes for the different diseases at the target tissue level. These observations suggest that future research on autoimmune diseases should focus on both the immune system and the target tissues, and on their dialog. Discovering similar disease-specific signatures may allow the identification of key pathways that could be targeted for therapy, including the repurposing of drugs already in clinical use for other diseases.