- Browse by Subject
Browsing by Subject "Two-component regulatory systems"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Regulation of Bacterial Two-Component Systems by Cardiolipin(American Society for Microbiology, 2023) Yeo, Won-Sik; Dyzenhaus, Sophie; Torres, Victor J.; Brinsmade, Shaun R.; Bae, Taeok; Microbiology and Immunology, School of MedicineThe regulation of membrane protein activity for cellular functions is critically dependent on the composition of phospholipid membranes. Cardiolipin, a unique phospholipid found in bacterial membranes and mitochondrial membranes of eukaryotes, plays a crucial role in stabilizing membrane proteins and maintaining their function. In the human pathogen Staphylococcus aureus, the SaeRS two-component system (TCS) controls the expression of key virulence factors essential for the bacterium’s virulence. The SaeS sensor kinase activates the SaeR response regulator via phosphoryl transfer to bind its gene target promoters. In this study, we report that cardiolipin is critical for sustaining the full activity of SaeRS and other TCSs in S. aureus. The sensor kinase protein SaeS binds directly to cardiolipin and phosphatidylglycerol, enabling SaeS activity. Elimination of cardiolipin from the membrane reduces SaeS kinase activity, indicating that bacterial cardiolipin is necessary for modulating the kinase activities of SaeS and other sensor kinases during infection. Moreover, the deletion of cardiolipin synthase genes cls1 and cls2 leads to reduced cytotoxicity to human neutrophils and lower virulence in a mouse model of infection. These findings suggest a model where cardiolipin modulates the kinase activity of SaeS and other sensor kinases after infection to adapt to the hostile environment of the host and expand our knowledge of how phospholipids contribute to membrane protein function.Item Regulation of the Sae Two-Component System by Branched- Chain Fatty Acids in Staphylococcus aureus(American Society for Microbiology, 2022) Pendleton, Augustus; Yeo, Won-Sik; Alqahtani, Shahad; DiMaggio, Dennis A., Jr.; Stone, Carl J.; Li, Zhaotao; Singh, Vineet K.; Montgomery, Christopher P.; Bae, Taeok; Brinsmade, Shaun R.; Microbiology and Immunology, School of MedicineStaphylococcus aureus is a ubiquitous Gram-positive bacterium and an opportunistic human pathogen. S. aureus pathogenesis relies on a complex network of regulatory factors that adjust gene expression. Two important factors in this network are CodY, a repressor protein responsive to nutrient availability, and the SaeRS two-component system (TCS), which responds to neutrophil-produced factors. Our previous work revealed that CodY regulates the secretion of many toxins indirectly via Sae through an unknown mechanism. We report that disruption of codY results in increased levels of phosphorylated SaeR (SaeR~P) and that codY mutant cell membranes contain a higher percentage of branched-chain fatty acids (BCFAs) than do wild-type membranes, prompting us to hypothesize that changes to membrane composition modulate the activity of the SaeS sensor kinase. Disrupting the lpdA gene encoding dihydrolipoyl dehydrogenase, which is critical for BCFA synthesis, significantly reduced the abundance of SaeR, phosphorylated SaeR, and BCFAs in the membrane, resulting in reduced toxin production and attenuated virulence. Lower SaeR levels could be explained in part by reduced stability. Sae activity in the lpdA mutant could be complemented genetically and chemically with exogenous short- or full-length BCFAs. Intriguingly, lack of lpdA also alters the activity of other TCSs, suggesting a specific BCFA requirement managing the basal activity of multiple TCSs. These results reveal a novel method of posttranscriptional virulence regulation via BCFA synthesis, potentially linking CodY activity to multiple virulence regulators in S. aureus.