- Browse by Subject
Browsing by Subject "Tumorigenesis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway(Springer, 2021-06) Najar, Mohd Altaf; Rex, D.A.B.; Modi, Prashant Kumar; Agarwal, Nupur; Dagamajalu, Shobha; Karthikkeyan, Gayathree; Vijayakumar, Manavalan; Chatterjee, Aditi; Sankar, Uma; Prasad, T.S. Keshava; Anatomy and Cell Biology, School of MedicineCalcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein-protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database ( https://www.wikipathways.org/index.php/Pathway:WP4874 ). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.Item Counterintuitive production of tumor-suppressive secretomes from Oct4- and c-Myc-overexpressing tumor cells and MSCs(Ivyspring International, 2022-03-28) Li, Kexin; Sun, Xun; Zha, Rongrong; Liu, Shengzhi; Feng, Yan; Sano, Tomonori; Aryal, Uma K.; Sudo, Akihiro; Li, Bai-Yan; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Advanced breast cancer frequently metastasizes to bone, but inhibiting tumor progression in chemotherapy may occasionally enhance tumorigenesis. Here, we employed a counterintuitive approach of overexpressing Yamanaka factors (Oct4, c-Myc, Sox2, and Klf4) and examined a conditioned medium (CM)-based treatment option with induced tumor-suppressing cells (iTSCs). Methods:In vitro proliferation and migration assays were conducted using tumor cell lines derived from breast cancer, as well as prostate and pancreatic cancers, and osteosarcoma. The tumor-suppressing capability of iTSC-derived CM was evaluated using freshly isolated breast cancer tissues and a mouse model of mammary tumors and tumor-induced osteolysis. The regulatory mechanism was evaluated using Western blotting, immunoprecipitation, pull-down, gene overexpression, and RNA interference based on mass spectrometry-based proteomics data. Results: The overexpression of Oct4 and c-Myc in tumor cells and MSCs, but not Sox2 or Klf4, generated anti-tumor CM, which suppressed the progression of mammary tumors and tumor-induced bone loss. Notably, CM downregulated histone demethylase, and PDL-1, a blocker of T-cell-based immune responses. Whole-genome proteomics predicted enolase 1 (Eno1), Hsp90ab1, Eef2, and vinculin as extracellular tumor suppressors. Specifically, CD44 was co-immunoprecipitated with Eno1 and the silencing of CD44 suppressed Eno1's anti-tumor action. The overexpression of Oct4 and c-Myc also generated secretomes that inhibited the development of bone-resorbing osteoclasts. Conclusions: In analogous to cell competition in which Myc-overexpressing cells in Drosophila and mouse embryos remove neighboring cells with a lower level of Myc, this study presented the possibility of eliminating tumor cells by the secretory proteomes derived from Myc/Oc4-overexpressing iTSCs.Item eIF3 Regulation of Protein Synthesis, Tumorigenesis, and Therapeutic Response(SpringerLink, 2017) Yin, Ji-Ye; Dong, Zizheng; Zhang, Jian-Ting; Pharmacology and Toxicology, School of MedicineTranslation initiation is the rate-limiting step of protein synthesis and highly regulated. Eukaryotic initiation factor 3 (eIF3) is the largest and most complex initiation factor consisting of 13 putative subunits. A growing number of studies suggest that eIF3 and its subunits may represent a new group of proto- oncogenes and associates with prognosis. They regulate translation of a subset of mRNAs involved in many cellular processes including proliferation, apoptosis, DNA repair, and cell cycle. Therefore, unveiling the mechanisms of eIF3 action in tumorigenesis may help identify attractive targets for cancer therapy. Here, we describe a series of methods used in the study of eIF3 function in regulating protein synthesis, tumorigenesis, and cellular response to therapeutic treatments.Item Protein phosphatase 5 and the tumor suppressor p53 down-regulate each other's activities in mice(American Society for Biochemistry and Molecular Biology, 2018-11-23) Wang, Jun; Shen, Tao; Zhu, Wuqiang; Dou, Longyu; Gu, Hao; Zhang, Lingling; Yang, Zhenyun; Chen, Hanying; Zhou, Qi; Sánchez, Edwin R.; Field, Loren J.; Mayo, Lindsey D.; Xie, Zhongwen; Xiao, Deyong; Lin, Xia; Shou, Weinian; Yong, Weidong; Pediatrics, School of MedicineProtein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53 +/- pp5 +/- or p53 +/- pp5 -/- mice revealed that complete loss of PP5 reduces tumorigenesis in the p53 +/- mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress.