- Browse by Subject
Browsing by Subject "Triple-negative breast cancer"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing(Springer, 2014-01) Radovich, Milan; Clare, Susan E.; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A.; Solzak, Jeffrey P.; Kassem, Nawal; Mathieson, Theresa; V. Storniolo, Anna Maria; Rufenbarger, Connie; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, Mi Ran; Sauder, Candice A.; Doxey, Diane; Henry, Jill E.; Hilligoss, Eric E.; Sakarya, Onur; Hyland, Fiona C.; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W.; Schneider, Bryan P.; Department of Surgery, IU School of MedicineTriple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.Item Cytotoxic T-lymphocyte infiltration and chemokine predict long-term patient survival independently of tumor mutational burden in triple-negative breast cancer(Sage, 2021-04-05) Katsuta, Eriko; Yan, Li; Opyrchal, Mateusz; Kalinski, Pawel; Takabe, Kazuaki; Medicine, School of MedicineBackground: Cytotoxic T-lymphocyte (CTL) infiltration into tumor is a positive prognostic factor in breast cancer. High tumor mutational burden (TMB) is also considered as a predictor of tumor immunogenicity and response to immunotherapy. However, it is unclear whether the infiltration of functional CTL simply reflects the TMB or represents an independent prognostic value. Methods: Utilizing The Cancer Genome Atlas (TCGA) breast cancer cohort, we established the Functional Hotness Score (FHS). The associations of FHS and breast cancer patient prognosis as well as distinct immunity markers were analyzed in a total of 3011 breast cancer patients using TCGA, METABRIC and metastatic breast cancer (MBC) cohort GSE110590. Results: We established FHS, based on CD8A, GZMB and CXCL10 gene expression levels of bulk tumors, which delivered the best prognostic value among some gene combinations. Breast cancer patients with the high-FHS tumors showed significantly better survival. FHS was lower in the MBCs. Triple-negative breast cancer (TNBC) showed the highest FHS among subtypes. FHS predicted patient survival in hormone receptor (HR)-negative, especially in TNBC, but not in HR-positive breast cancer. FHS predicted patient prognosis independently in TNBC. The high-FHS TNBCs showed not only higher CD8+ T cell infiltration, but also enhanced broader type-1 anti-cancer immunity. The patients with the high-FHS tumors showed better prognosis not only in high-TMB tumors but also in low-TMB TNBCs. The combination of high-TMB with high-FHS identified a unique subset of patients who do not recur over time in TNBC. Conclusion: TNBCs with high FHS based on the expression levels of CD8A, GZMB and CXCL10 showed improved prognosis with enhanced anti-cancer immunity regardless of TMB. FHS constitutes an independent prognostic marker of survival, particularly robustly when combined with TMB in TNBC.Item Initial Phase I Safety Study of Gedatolisib plus Cofetuzumab Pelidotin for Patients with Metastatic Triple-Negative Breast Cancer(American Association for Cancer Research, 2022) Radovich, Milan; Solzak, Jeffrey P.; Wang, Chao J.; Hancock, Bradley A.; Badve, Sunil; Althouse, Sandra K.; Bray, Steven M.; Storniolo, Anna Maria V.; Ballinger, Tarah J.; Schneider, Bryan P.; Miller, Kathy D.; Surgery, School of MedicinePurpose: The PI3K pathway is dysregulated in the majority of triple-negative breast cancers (TNBC), yet single-agent inhibition of PI3K has been ineffective in TNBC. PI3K inhibition leads to an immediate compensatory upregulation of the Wnt pathway. Dual targeting of both pathways is highly synergistic against TNBC models in vitro and in vivo. We initiated a phase I clinical trial combining gedatolisib, a pan-class I isoform PI3K/mTOR inhibitor, and cofetuzumab pelidotin, an antibody-drug conjugate against the cell-surface PTK7 protein (Wnt pathway coreceptor) with an auristatin payload. Patients and methods: Participants (pt) had metastatic TNBC or estrogen receptor (ER) low (ER and PgR < 5%, HER2-negative) breast cancer, and had received at least one prior chemotherapy for advanced disease. The primary objective was safety. Secondary endpoints included overall response rate (ORR), clinical benefit at 18 weeks (CB18), progression-free survival (PFS), and correlative analyses. Results: A total of 18 pts were enrolled in three dose cohorts: gedatolisib 110 mg weekly + cofetuzumab pelidotin 1.4 mg/kg every 3 weeks (n = 4), 180 mg + 1.4 mg/kg (n = 3), and 180 mg + 2.8 mg/kg (n = 11). Nausea, anorexia, fatigue, and mucositis were common but rarely reached ≥grade 3 severity. Myelosuppression was uncommon. ORR was 16.7% (3/18). An additional 3 pts had stable disease (of these 2 had stable disease for >18 weeks); CB18 was 27.8%. Median PFS was 2.0 months (95% confidence interval for PFS: 1.2-6.2). Pts with clinical benefit were enriched with genomic alterations in the PI3K and PTK7 pathways. Conclusions: The combination of gedatolisib + cofetuzumab pelidotin was well tolerated and demonstrated promising clinical activity. Further investigation of this drug combination in metastatic TNBC is warranted.Item Mechano-Sensing Channel PIEZO2 Enhances Invasive Phenotype in Triple-Negative Breast Cancer(MDPI, 2022-08-31) Katsuta, Eriko; Takabe, Kazuaki; Vujcic, Marija; Gottlieb, Philip A.; Dai, Tao; Mercado-Perez, Arnaldo; Beyder, Arthur; Wang, Qingfei; Opyrchal, Mateusz; Medicine, School of MedicineBackground: Mechanically gated PIEZO channels lead to an influx of cations, activation of additional Ca2+ channels, and cell depolarization. This study aimed to investigate PIEZO2’s role in breast cancer. Methods: The clinical relevance of PIEZO2 expression in breast cancer patient was analyzed in a publicly available dataset. Utilizing PIEZO2 overexpressed breast cancer cells, and in vitro and in vivo experiments were conducted. Results: High expression of PIEZO2 was correlated with a worse survival in triple-negative breast cancer (TNBC) but not in other subtypes. Increased PEIZO2 channel function was confirmed in PIEZO2 overexpressed cells after mechanical stimulation. PIEZO2 overexpressed cells showed increased motility and invasive phenotypes as well as higher expression of SNAIL and Vimentin and lower expression of E-cadherin in TNBC cells. Correspondingly, high expression of PIEZO2 was correlated with the increased expression of epithelial–mesenchymal transition (EMT)-related genes in a TNBC patient. Activated Akt signaling was observed in PIEZO2 overexpressed TNBC cells. PIEZO2 overexpressed MDA-MB-231 cells formed a significantly higher number of lung metastases after orthotopic implantation. Conclusion: PIEZO2 activation led to enhanced SNAIL stabilization through Akt activation. It enhanced Vimentin and repressed E-cadherin transcription, resulting in increased metastatic potential and poor clinical outcomes in TNBC patients.Item SOX4 and SMARCA4 cooperatively regulate PI3k signaling through transcriptional activation of TGFBR2(Springer Nature, 2021-04-09) Mehta, Gaurav A.; Angus, Steven P.; Khella, Christen A.; Tong, Kevin; Khanna, Pooja; Dixon, Shelley A.H.; Verzi, Michael P.; Johnson, Gary L.; Gatza, Michael L.; Pediatrics, School of MedicineDysregulation of PI3K/Akt signaling is a dominant feature in basal-like or triple-negative breast cancers (TNBC). However, the mechanisms regulating this pathway are largely unknown in this subset of aggressive tumors. Here we demonstrate that the transcription factor SOX4 is a key regulator of PI3K signaling in TNBC. Genomic and proteomic analyses coupled with mechanistic studies identified TGFBR2 as a direct transcriptional target of SOX4 and demonstrated that TGFBR2 is required to mediate SOX4-dependent PI3K signaling. We further report that SOX4 and the SWI/SNF ATPase SMARCA4, which are uniformly overexpressed in basal-like tumors, form a previously unreported complex that is required to maintain an open chromatin conformation at the TGFBR2 regulatory regions in order to mediate TGFBR2 expression and PI3K signaling. Collectively, our findings delineate the mechanism by which SOX4 and SMARCA4 cooperatively regulate PI3K/Akt signaling and suggest that this complex may play an essential role in TNBC genesis and/or progression.Item Systemic Therapy De-Escalation in Early-Stage Triple-Negative Breast Cancer: Dawn of a New Era?(MDPI, 2022-04-07) Gupta, Ravi Kumar; Roy, Arya Mariam; Gupta, Ashish; Takabe, Kazuaki; Dhakal, Ajay; Opyrchal, Mateusz; Kalinski, Pawel; Gandhi, Shipra; Medicine, School of MedicineEarly-stage triple negative breast cancer (TNBC) has been traditionally treated with surgery, radiation, and chemotherapy. The current standard of care systemic treatment of early-stage II and III TNBC involves the use of anthracycline-cyclophosphamide and carboplatin-paclitaxel with pembrolizumab in the neoadjuvant setting followed by adjuvant pembrolizumab per KEYNOTE-522. It is increasingly clear that not all patients with early-stage TNBC need this intensive treatment, thus paving the way for exploring opportunities for regimen de-escalation in selected subgroups. For T1a tumors (≤5 mm), chemotherapy is not used, and for tumors 6-10 mm (T1b) in size with negative lymph nodes, retrospective studies have failed to show a significant benefit with chemotherapy. In low-risk patients, anthracycline-free chemotherapy may be as effective as conventional therapy, as shown in some studies where replacing anthracyclines with carboplatin has shown non-inferior results for pathological complete response (pCR), which may form the backbone of future combination therapies. Recent advances in our understanding of TNBC heterogeneity, mutations, and surrogate markers of response such as pCR have enabled the development of multiple treatment options in the (neo)adjuvant setting in order to de-escalate treatment. These de-escalation studies based on tumor mutational status, such as using Poly ADP-ribose polymerase inhibitors (PARPi) in patients with BRCA mutations, and new immunotherapies such as PD1 blockade, have shown a promising impact on pCR. In addition, the investigational use of (bio)markers, such as high levels of tumor-infiltrating lymphocytes (TILs), low levels of tumor-associated macrophages (TAMs), and complete remission on imaging, also look promising. In this review, we cover the current standard of care systemic treatment of early TNBC and review the opportunities for treatment de-escalation based on clinical risk factors, biomarkers, mutational status, and molecular subtype.Item Targeting Interleukin-13 Receptor α2 and EphA2 in Aggressive Breast Cancer Subtypes with Special References to Chimeric Antigen Receptor T-Cell Therapy(MDPI, 2024-03-28) Kashyap, Dharambir; Salman, Huda; Medicine, School of MedicineBreast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.Item Tumor-intrinsic role of ICAM-1 in driving metastatic progression of triple-negative breast cancer through direct interaction with EGFR(Springer Nature, 2024-10-16) Kang, Jae‑Hyeok; Uddin, Nizam; Kim, Seungmo; Zhao, Yi; Yoo, Ki‑Chun; Kim, Min‑Jung; Hong, Sung‑Ah; Bae, Sangsu; Lee, Jeong‑Yeon; Shin, Incheol; Jin, Young Woo; O’Hagan, Heather M.; Yi, Joo Mi; Lee, Su‑Jae; Medical and Molecular Genetics, School of MedicineTriple-negative breast cancer (TNBC), the most aggressive subtype, presents a critical challenge due to the absence of approved targeted therapies. Hence, there is an urgent need to identify effective therapeutic targets for this condition. While epidermal growth factor receptor (EGFR) is prominently expressed in TNBC and recognized as a therapeutic target, anti-EGFR therapies have yet to gain approval for breast cancer treatment due to their associated side effects and limited efficacy. Here, we discovered that intercellular adhesion molecule-1 (ICAM-1) exhibits elevated expression levels in metastatic breast cancer and serves as a pivotal binding adaptor for EGFR activation, playing a crucial role in malignant progression. The activation of EGFR by tumor-expressed ICAM-1 initiates biased signaling within the JAK1/STAT3 pathway, consequently driving epithelial-to-mesenchymal transition and facilitating heightened metastasis without influencing tumor growth. Remarkably, ICAM-1-neutralizing antibody treatment significantly suppressed cancer metastasis in a breast cancer orthotopic xenograft mouse model. In conclusion, our identification of ICAM-1 as a novel tumor intrinsic regulator of EGFR activation offers valuable insights for the development of TNBC-specific anti-EGFR therapies.