- Browse by Subject
Browsing by Subject "Triple-negative"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer(SpringerNature, 2016-11) Fusco, Nicola; Geyer, Felipe C.; De Filippo, Maria R.; Martelotto, Luciano G.; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M.; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A.; Burke, Kathleen A.; Lim, Raymond S.; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S.; Ichihara, Shu; Ellis, Ian O.; Reis-Filho, Jorge S.; Weigelt, Britta; Ng, Charlotte K.Y.; Department of Pathology and Laboratory Medicine, IU School of MedicineAdenoid cystic carcinoma of the breast is a rare histologic type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Whilst the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intra-tumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by MYB-NFIB fusion gene, and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple-negative breast cancer of no special type may involve the selection of neoplastic clones and/ or the acquisition of additional genetic alterations.Item Profiling molecular regulators of recurrence in chemorefractory triple-negative breast cancers(BioMed Central, 2019-08-05) Hancock, Bradley A.; Chen, Yu-Hsiang; Solzak, Jeffrey P.; Ahmad, Mufti N.; Wedge, David C.; Brinza, Dumitru; Scafe, Charles; Veitch, James; Gottimukkala, Rajesh; Short, Walt; Atale, Rutuja V.; Ivan, Mircea; Badve, Sunil S.; Schneider, Bryan P.; Lu, Xiongbin; Miller, Kathy D.; Radovich, Milan; Surgery, School of MedicineBACKGROUND: Approximately two thirds of patients with localized triple-negative breast cancer (TNBC) harbor residual disease (RD) after neoadjuvant chemotherapy (NAC) and have a high risk-of-recurrence. Targeted therapeutic development for TNBC is of primary significance as no targeted therapies are clinically indicated for this aggressive subset. In view of this, we conducted a comprehensive molecular analysis and correlated molecular features of chemorefractory RD tumors with recurrence for the purpose of guiding downstream therapeutic development. METHODS: We assembled DNA and RNA sequencing data from RD tumors as well as pre-operative biopsies, lymphocytic infiltrate, and survival data as part of a molecular correlative to a phase II post-neoadjuvant clinical trial. Matched somatic mutation, gene expression, and lymphocytic infiltrate were assessed before and after chemotherapy to understand how tumors evolve during chemotherapy. Kaplan-Meier survival analyses were conducted categorizing cancers with TP53 mutations by the degree of loss as well as by the copy number of a locus of 18q corresponding to the SMAD2, SMAD4, and SMAD7 genes. RESULTS: Analysis of matched somatic genomes pre-/post-NAC revealed chaotic acquisition of copy gains and losses including amplification of prominent oncogenes. In contrast, significant gains in deleterious point mutations and insertion/deletions were not observed. No trends between clonal evolution and recurrence were identified. Gene expression data from paired biopsies revealed enrichment of actionable regulators of stem cell-like behavior and depletion of immune signaling, which was corroborated by total lymphocytic infiltrate, but was not associated with recurrence. Novel characterization of TP53 mutation revealed prognostically relevant subgroups, which were linked to MYC-driven transcriptional amplification. Finally, somatic gains in 18q were associated with poor prognosis, likely driven by putative upregulation of TGFß signaling through the signal transducer SMAD2. CONCLUSIONS: We conclude TNBCs are dynamic during chemotherapy, demonstrating complex plasticity in subclonal diversity, stem-like qualities, and immune depletion, but somatic alterations of TP53/MYC and TGFß signaling in RD samples are prominent drivers of recurrence, representing high-yield targets for additional interrogation.