- Browse by Subject
Browsing by Subject "Triple negative breast neoplasms"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Adenomatous Polyposis Coli loss controls cell cycle regulators and response to paclitaxel in MDA-MB-157 metaplastic breast cancer cells(PLOS, 2021-08-09) Astarita, Emily M.; Maloney, Sara M.; Hoover, Camden A.; Berkeley, Bronwyn J.; VanKlompenberg, Monica K.; Nair, T. Murlidharan; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineAdenomatous Polyposis Coli (APC) is lost in approximately 70% of sporadic breast cancers, with an inclination towards triple negative breast cancer (TNBC). TNBC is treated with traditional chemotherapy, such as paclitaxel (PTX); however, tumors often develop drug resistance. We previously created APC knockdown cells (APC shRNA1) using the human TNBC cells, MDA-MB-157, and showed that APC loss induces PTX resistance. To understand the mechanisms behind APC-mediated PTX response, we performed cell cycle analysis and analyzed cell cycle related proteins. Cell cycle analysis indicated increased G2/M population in both PTX-treated APC shRNA1 and parental cells, suggesting that APC expression does not alter PTX-induced G2/M arrest. We further studied the subcellular localization of the G2/M transition proteins, cyclin B1 and CDK1. The APC shRNA1 cells had increased CDK1, which was preferentially localized to the cytoplasm, and increased baseline CDK6. RNA-sequencing was performed to gain a global understanding of changes downstream of APC loss and identified a broad mis-regulation of cell cycle-related genes in APC shRNA1 cells. Our studies are the first to show an interaction between APC and taxane response in breast cancer. The implications include designing combination therapy to re-sensitize APC-mutant breast cancers to taxanes using the specific cell cycle alterations.Item Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy With Disease Recurrence in Patients With Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial(American Medical Association, 2020-09) Radovich, Milan; Jiang, Guanglong; Hancock, Bradley A.; Chitambar, Christopher; Nanda, Rita; Falkson, Carla; Lynce, Filipa C.; Gallagher, Christopher; Isaacs, Claudine; Blaya, Marcelo; Paplomata, Elisavet; Walling, Radhika; Daily, Karen; Mahtani, Reshma; Thompson, Michael A.; Graham, Robert; Cooper, Maureen E.; Pavlick, Dean C.; Albacker, Lee A.; Gregg, Jeffrey; Solzak, Jeffrey P.; Chen, Yu-Hsiang; Bales, Casey L.; Cantor, Erica; Shen, Fei; Storniolo, Anna Maria V.; Badve, Sunil; Ballinger, Tarah J.; Chang, Chun-Li; Zhong, Yuan; Savran, Cagri; Miller, Kathy D.; Schneider, Bryan P.; Medical and Molecular Genetics, School of MedicineImportance: A significant proportion of patients with early-stage triple-negative breast cancer (TNBC) are treated with neoadjuvant chemotherapy. Sequencing of circulating tumor DNA (ctDNA) after surgery, along with enumeration of circulating tumor cells (CTCs), may be used to detect minimal residual disease and assess which patients may experience disease recurrence. Objective: To determine whether the presence of ctDNA and CTCs after neoadjuvant chemotherapy in patients with early-stage TNBC is independently associated with recurrence and clinical outcomes. Design, setting, and participants: A preplanned secondary analysis was conducted from March 26, 2014, to December 18, 2018, using data from 196 female patients in BRE12-158, a phase 2 multicenter randomized clinical trial that randomized patients with early-stage TNBC who had residual disease after neoadjuvant chemotherapy to receive postneoadjuvant genomically directed therapy vs treatment of physician choice. Patients had blood samples collected for ctDNA and CTCs at time of treatment assignment; ctDNA analysis with survival was performed for 142 patients, and CTC analysis with survival was performed for 123 patients. Median clinical follow-up was 17.2 months (range, 0.3-58.3 months). Interventions: Circulating tumor DNA was sequenced using the FoundationACT or FoundationOneLiquid Assay, and CTCs were enumerated using an epithelial cell adhesion molecule-based, positive-selection microfluidic device. Main outcomes and measures: Primary outcomes were distant disease-free survival (DDFS), disease-free survival (DFS), and overall survival (OS). Results: Among 196 female patients (mean [SD] age, 49.6 [11.1] years), detection of ctDNA was significantly associated with inferior DDFS (median DDFS, 32.5 months vs not reached; hazard ratio [HR], 2.99; 95% CI, 1.38-6.48; P = .006). At 24 months, DDFS probability was 56% for ctDNA-positive patients compared with 81% for ctDNA-negative patients. Detection of ctDNA was similarly associated with inferior DFS (HR, 2.67; 95% CI, 1.28-5.57; P = .009) and inferior OS (HR, 4.16; 95% CI,1.66-10.42; P = .002). The combination of ctDNA and CTCs provided additional information for increased sensitivity and discriminatory capacity. Patients who were ctDNA positive and CTC positive had significantly inferior DDFS compared with those who were ctDNA negative and CTC negative (median DDFS, 32.5 months vs not reached; HR, 5.29; 95% CI, 1.50-18.62; P = .009). At 24 months, DDFS probability was 52% for patients who were ctDNA positive and CTC positive compared with 89% for those who were ctDNA negative and CTC negative. Similar trends were observed for DFS (HR, 3.15; 95% CI, 1.07-9.27; P = .04) and OS (HR, 8.60; 95% CI, 1.78-41.47; P = .007). Conclusions and relevance: In this preplanned secondary analysis of a randomized clinical trial, detection of ctDNA and CTCs in patients with early-stage TNBC after neoadjuvant chemotherapy was independently associated with disease recurrence, which represents an important stratification factor for future postneoadjuvant trials.Item Association of Genetic Ancestry With Terminal Duct Lobular Unit Involution Among Healthy Women(Oxford University Press, 2022) Sung, Hyuna; Koka, Hela; Marino, Natascia; Pfeiffer, Ruth M.; Cora, Renata; Figueroa, Jonine D.; Sherman, Mark E.; Gierach, Gretchen L.; Yang, Xiaohong R.; Medicine, School of MedicineReduced age-related terminal duct lobular unit (TDLU) involution has been linked to increased breast cancer risk and triple-negative breast cancer. Associations of TDLU involution levels with race and ethnicity remain incompletely explored. Herein, we examined the association between genetic ancestry and TDLU involution in normal breast tissue donated by 2014 healthy women in the United States. Women of African ancestry were more likely than European women to have increased TDLU counts (odds ratio [OR]trend = 1.36, 95% confidence interval [CI] = 1.07 to 1.74), acini counts per TDLU (OR = 1.47, 95% CI = 1.06 to 2.03), and median TDLU span (ORtrend = 1.44, 95% CI = 1.08 to 1.91), indicating lower involution, whereas East Asian descendants were associated with decreased TDLU counts (ORtrend = 0.52, 95% CI = 0.35 to 0.78) after controlling for potential confounders. These associations are consistent with the racial variations in incidence rates of triple-negative breast cancer in the United States and suggest opportunities for future work examining whether TDLU involution may mediate the racial differences in subtype-specific breast cancer risk.Item Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer(American Association for Cancer Research, 2024) Wescott, Elizabeth C.; Sun, Xiaopeng; Gonzalez-Ericsson, Paula; Hanna, Ann; Taylor, Brandie C.; Sanchez, Violeta; Bronzini, Juliana; Opalenik, Susan R.; Sanders, Melinda E.; Wulfkuhle, Julia; Gallagher, Rosa I.; Gomez, Henry; Isaacs, Claudine; Bharti, Vijaya; Wilson, John T.; Ballinger, Tarah J.; Santa-Maria, Cesar A.; Shah, Payal D.; Dees, Elizabeth C.; Lehmann, Brian D.; Abramson, Vandana G.; Hirst, Gillian L.; Brown Swigart, Lamorna; van ˈt Veer, Laura J.; Esserman, Laura J.; Petricoin, Emanuel F.; Pietenpol, Jennifer A.; Balko, Justin M.; Medicine, School of MedicineCombinations of immune checkpoint inhibitors (ICI, including anti-PD-1/PD-L1) and chemotherapy have been FDA approved for metastatic and early-stage triple-negative breast cancer (TNBC), but most patients do not benefit. B7-H4 is a B7 family ligand with proposed immunosuppressive functions being explored as a cancer immunotherapy target and may be associated with anti-PD-L1 resistance. However, little is known about its regulation and effect on immune cell function in breast cancers. We assessed murine and human breast cancer cells to identify regulation mechanisms of B7-H4 in vitro. We used an immunocompetent anti-PD-L1-sensitive orthotopic mammary cancer model and induced ectopic expression of B7-H4. We assessed therapy response and transcriptional changes at baseline and under treatment with anti-PD-L1. We observed B7-H4 was highly associated with epithelial cell status and transcription factors and found to be regulated by PI3K activity. EMT6 tumors with cell-surface B7-H4 expression were more resistant to immunotherapy. In addition, tumor-infiltrating immune cells had reduced immune activation signaling based on transcriptomic analysis. Paradoxically, in human breast cancer, B7-H4 expression was associated with survival benefit for patients with metastatic TNBC treated with carboplatin plus anti-PD-L1 and was associated with no change in response or survival for patients with early breast cancer receiving chemotherapy plus anti-PD-1. While B7-H4 induces tumor resistance to anti-PD-L1 in murine models, there are alternative mechanisms of signaling and function in human cancers. In addition, the strong correlation of B7-H4 to epithelial cell markers suggests a potential regulatory mechanism of B7-H4 independent of PD-L1. Significance: This translational study confirms the association of B7-H4 expression with a cold immune microenvironment in breast cancer and offers preclinical studies demonstrating a potential role for B7-H4 in suppressing response to checkpoint therapy. However, analysis of two clinical trials with checkpoint inhibitors in the early and metastatic settings argue against B7-H4 as being a mechanism of clinical resistance to checkpoints, with clear implications for its candidacy as a therapeutic target.Item Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis(Springer Nature, 2023) Garcia-Recio, Susana; Hinoue, Toshinori; Wheeler, Gregory L.; Kelly, Benjamin J.; Garrido-Castro, Ana C.; Pascual, Tomas; De Cubas, Aguirre A.; Xia, Youli; Felsheim, Brooke M.; McClure, Marni B.; Rajkovic, Andrei; Karaesmen, Ezgi; Smith, Markia A.; Fan, Cheng; Gonzalez Ericsson, Paula I.; Sanders, Melinda E.; Creighton, Chad J.; Bowen, Jay; Leraas, Kristen; Burns, Robyn T.; Coppens, Sara; Wheless, Amy; Rezk, Salma; Garrett, Amy L.; Parker, Joel S.; Foy, Kelly K.; Shen, Hui; Park, Ben H.; Krop, Ian; Anders, Carey; Gastier-Foster, Julie; Rimawi, Mothaffar F.; Nanda, Rita; Lin, Nancy U.; Isaacs, Claudine; Marcom, P. Kelly; Storniolo, Anna Maria; Couch, Fergus J.; Chandran, Uma; Davis, Michael; Silverstein, Jonathan; Ropelewski, Alexander; Liu, Minetta C.; Hilsenbeck, Susan G.; Norton, Larry; Richardson, Andrea L.; Symmans, W. Fraser; Wolff, Antonio C.; Davidson, Nancy E.; Carey, Lisa A.; Lee, Adrian V.; Balko, Justin M.; Hoadley, Katherine A.; Laird, Peter W.; Mardis, Elaine R.; King, Tari A.; AURORA US Network; Perou, Charles M.; Medicine, School of MedicineThe AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell-cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.Item Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer(American Association for Cancer Research, 2024) Wang, Ruizhong; Khatpe, Aditi S.; Kumar, Brijesh; Mang, Henry Elmer; Batic, Katie; Adebayo, Adedeji K.; Nakshatri, Harikrishna; Surgery, School of MedicineCancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. Significance: Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.Item NKG2A Is a Therapeutic Vulnerability in Immunotherapy Resistant MHC-I Heterogeneous Triple-Negative Breast Cancer(American Association for Cancer Research, 2024) Taylor, Brandie C.; Sun, Xiaopeng; Gonzalez-Ericsson, Paula I.; Sanchez, Violeta; Sanders, Melinda E.; Wescott, Elizabeth C.; Opalenik, Susan R.; Hanna, Ann; Chou, Shu-Ting; Van Kaer, Luc; Gomez, Henry; Isaacs, Claudine; Ballinger, Tarah J.; Santa-Maria, Cesar A.; Shah, Payal D.; Dees, Elizabeth C.; Lehmann, Brian D.; Abramson, Vandana G.; Pietenpol, Jennifer A.; Balko, Justin M.; Medicine, School of MedicineDespite the success of immune checkpoint inhibition (ICI) in treating cancer, patients with triple-negative breast cancer (TNBC) often develop resistance to therapy, and the underlying mechanisms are unclear. MHC-I expression is essential for antigen presentation and T-cell-directed immunotherapy responses. This study demonstrates that TNBC patients display intratumor heterogeneity in regional MHC-I expression. In murine models, loss of MHC-I negates antitumor immunity and ICI response, whereas intratumor MHC-I heterogeneity leads to increased infiltration of natural killer (NK) cells in an IFNγ-dependent manner. Using spatial technologies, MHC-I heterogeneity is associated with clinical resistance to anti-programmed death (PD) L1 therapy and increased NK:T-cell ratios in human breast tumors. MHC-I heterogeneous tumors require NKG2A to suppress NK-cell function. Combining anti-NKG2A and anti-PD-L1 therapies restores complete response in heterogeneous MHC-I murine models, dependent on the presence of activated, tumor-infiltrating NK and CD8+ T cells. These results suggest that similar strategies may enhance patient benefit in clinical trials. Significance: Clinical resistance to immunotherapy is common in breast cancer, and many patients will likely require combination therapy to maximize immunotherapeutic benefit. This study demonstrates that heterogeneous MHC-I expression drives resistance to anti-PD-L1 therapy and exposes NKG2A on NK cells as a target to overcome resistance.Item Randomized Phase III Postoperative Trial of Platinum-Based Chemotherapy Versus Capecitabine in Patients With Residual Triple-Negative Breast Cancer Following Neoadjuvant Chemotherapy: ECOG-ACRIN EA1131(American Society of Clinical Oncology, 2021) Mayer, Ingrid A.; Zhao, Fengmin; Arteaga, Carlos L.; Symmans, William F.; Park, Ben H.; Burnette, Brian L.; Tevaarwerk, Amye J.; Garcia, Sofia F.; Smith, Karen L.; Makower, Della F.; Block, Margaret; Morley, Kimberly A.; Jani, Chirag R.; Mescher, Craig; Dewani, Shabana J.; Tawfik, Bernard; Flaum, Lisa E.; Mayer, Erica L.; Sikov, William M.; Rodler, Eve T.; Wagner, Lynne I.; DeMichele, Angela M.; Sparano, Joseph A.; Wolff, Antonio C.; Miller, Kathy D.; Medicine, School of MedicinePurpose: Patients with triple-negative breast cancer (TNBC) and residual invasive disease (RD) after completion of neoadjuvant chemotherapy (NAC) have a high-risk for recurrence, which is reduced by adjuvant capecitabine. Preclinical models support the use of platinum agents in the TNBC basal subtype. The EA1131 trial hypothesized that invasive disease-free survival (iDFS) would not be inferior but improved in patients with basal subtype TNBC treated with adjuvant platinum compared with capecitabine. Patients and methods: Patients with clinical stage II or III TNBC with ≥ 1 cm RD in the breast post-NAC were randomly assigned to receive platinum (carboplatin or cisplatin) once every 3 weeks for four cycles or capecitabine 14 out of 21 days every 3 weeks for six cycles. TNBC subtype (basal v nonbasal) was determined by PAM50 in the residual disease. A noninferiority design with superiority alternative was chosen, assuming a 4-year iDFS of 67% with capecitabine. Results: Four hundred ten of planned 775 participants were randomly assigned to platinum or capecitabine between 2015 and 2021. After median follow-up of 20 months and 120 iDFS events (61% of full information) in the 308 (78%) patients with basal subtype TNBC, the 3-year iDFS for platinum was 42% (95% CI, 30 to 53) versus 49% (95% CI, 39 to 59) for capecitabine. Grade 3 and 4 toxicities were more common with platinum agents. The Data and Safety Monitoring Committee recommended stopping the trial as it was unlikely that further follow-up would show noninferiority or superiority of platinum. Conclusion: Platinum agents do not improve outcomes in patients with basal subtype TNBC RD post-NAC and are associated with more severe toxicity when compared with capecitabine. Participants had a lower than expected 3-year iDFS regardless of study treatment, highlighting the need for better therapies in this high-risk population.