- Browse by Subject
Browsing by Subject "Triple negative breast cancer"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Combating CHK1 resistance in triple negative breast cancer: EGFR inhibition as potential combinational therapy(OAE Publishing, 2022-03-08) Stefanski, Casey D.; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineTriple negative breast cancer (TNBC) is marked by a lack of expression of the Estrogen Receptor, Progesterone Receptor, and human epidermal growth factor receptor 2. Therefore, targeted therapies are being investigated based on the expression profiles of tumors. Due to the potential for acquired and intrinsic resistance, there is a need for combination therapy to overcome resistance. In the article by Lee et al., the authors identify that, while prexasertib (a CHK1 inhibitor) lacks efficacy alone, combination with an EGFR inhibitor provides synergistic anti-tumor effects. Advances in targeted therapy for TNBC will benefit the clinical landscape for this disease, with this study initiating a new avenue of investigation.Item Constitutive activation of MEK5 promotes a mesenchymal and migratory cell phenotype in triple negative breast cancer(Impact Journals, 2021-05-18) Matossian, Margarite D.; Hoang, Van T.; Burks, Hope E.; La, Jacqueline; Elliott, Steven; Brock, Courtney; Rusch, Douglas B.; Buechlein, Aaron; Nephew, Kenneth P.; Bhatt, Akshita; Cavanaugh, Jane E.; Flaherty, Patrick T.; Collins-Burow, Bridgette M.; Burow, Matthew E.; Medicine, School of MedicineTriple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.Item Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer(Impact Journals, 2015-06-30) Rhodes, Lyndsay V.; Martin, Elizabeth C.; Segar, H. Chris; Miller, David F. B.; Buechlein, Aaron; Rusch, Douglas B.; Nephew, Kenneth P.; Burow, Matthew E.; Collins-Burow, Bridgette M.; Department of Cellular & Integrative Physiology, IU School of MedicineEpithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype.Item IB-DNQ and Rucaparib dual treatment alters cell cycle regulation and DNA repair in triple negative breast cancer cells(bioRxiv, 2024-05-18) Runnebohm, Avery M.; Wijeratne, H. R. Sagara; Peck Justice, Sarah A.; Wijeratne, Aruna B.; Roy, Gitanjali; Singh, Naveen; Hergenrother, Paul; Boothman, David A.; Motea, Edward A.; Mosley, Amber L.; Biochemistry and Molecular Biology, School of MedicineBackground: Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death. Methods: To gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability. Results: Very few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions. Conclusions: Our findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.Item Using Phosphatidylinositol Phosphorylation as Markers for Hyperglycemic Related Breast Cancer(MDPI, 2020-04) Devanathan, Nirupama; Jones, Sandra; Kaur, Gursimran; Kimble-Hill, Ann C.; Biology, School of ScienceStudies have suggested that type 2 diabetes (T2D) is associated with a higher incidence of breast cancer and related mortality rates. T2D postmenopausal women have an ~20% increased chance of developing breast cancer, and women with T2D and breast cancer have a 50% increase in mortality compared to breast cancer patients without diabetes. This correlation has been attributed to the general activation of insulin receptor signaling, glucose metabolism, phosphatidylinositol (PI) kinases, and growth pathways. Furthermore, the presence of breast cancer specific PI kinase and/or phosphatase mutations enhance metastatic breast cancer phenotypes. We hypothesized that each of the breast cancer subtypes may have characteristic PI phosphorylation profiles that are changed in T2D conditions. Therefore, we sought to characterize the PI phosphorylation when equilibrated in normal glycemic versus hyperglycemic serum conditions. Our results suggest that hyperglycemia leads to: 1) A reduction in PI3P and PIP3, with increased PI4P that is later converted to PI(3,4)P2 at the cell surface in hormone receptor positive breast cancer; 2) a reduction in PI3P and PI4P with increased PIP3 surface expression in human epidermal growth factor receptor 2-positive (HER2+) breast cancer; and 3) an increase in di- and tri-phosphorylated PIs due to turnover of PI3P in triple negative breast cancer. This study begins to describe some of the crucial changes in PIs that play a role in T2D related breast cancer incidence and metastasis.