- Browse by Subject
Browsing by Subject "Triple antibiotic paste"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Diluted antibiotics for treating traumatized immature teeth(2014) Sabrah, Ala'a Hussein Aref, 1984-; Platt, Jeffrey A., 1958-; Gregory, Richard L.; Hara, Anderson T.; Spolnik, Kenneth Jacob 1950-; Murray, Peter E.; Goebel, W. ScottEndodontic regeneration (ERP) has been successfully used in the treatment of traumatized immature teeth. The procedure has three essential steps: disinfecting the root canal (i.e. triple antibiotic paste (TAP) or double antibiotic paste (DAP)), provoking bleeding inside the canal to form a scaffold upon which pulp stem cells will be deposited and continue root growth, and creating a good coronal seal. Previous research has reported that antibiotic pastes (TAP and DAP) are cytotoxic to stem cells in the concentrations commonly used in endodontic regeneration (1000 mg/mL). To decrease the adverse effects on stem cells and increase the rate of success of the regeneration, defining appropriate antibiotic concentrations for ERP is critical. In this project, five in-vitro experiments were conducted to determine the breakpoint dilutions of both TAP and DAP medicaments, and to prepare a suitable novel pastes containing diluted TAP or DAP medicaments for ERP. In the first experiment, we compared the antibacterial effect of TAP, and DAP against early biofilm formation of Enterococcus faecalis (E. faecalis) and Porphyromonas gingivalis bacteria. In the second study, we investigated the antibacterial effect of various dilutions of TAP and DAP antibiotic medicaments against established E. faecalis biofilm. In the third experiment, we investigated longitudinally the residual antibacterial activity of human radicular dentin treated with 1000, 1 or 0.5 mg/ml of TAP and DAP. In the fourth study, we investigated the cytotoxic effect of various dilutions of TAP and DAP antibiotic medicaments on the survival of human dental pulp stem cells (DPSC). And in the fifth experiment, we investigated the antibacterial and cytotoxic effect of novel intracanal medicaments consisting of methylcellulose (MC) and/or propylene glycol (PG) mixed with 1mg/ml of TAP or DAP. 1 mg/ml of DAP or TAP medicaments had a significant antibacterial effect against early bacterial biofilm formation, and established bacterial biofilm. Furthermore, 1 mg/ml had a residual antibacterial activity comparable to 1000 mg/ml. The novel intracanal medicaments had comparable antibacterial effect to currently used medicaments (1000 mg/ml). Additionally, the novel intracanal medicaments significantly enhanced DPSC metabolic activity, compared to currently used medicaments in endodontic regeneration procedures.Item The effect of endodontic regeneration medicaments on mechanical properties of radicular dentin(2013) Yassen, Ghaeth H.; Platt, Jeffrey A., 1958-; Chu, Tien-Min Gabriel; Murray, Peter E.; Allen, Matthew R.; Vail, Mychel Macapagal, 1969-Endodontic regeneration treatment of necrotic immature teeth has gained popularity in recent years. The approach suggests a biological alternative to induce a continuous root development. In this project, three in vitro experiments were conducted to investigate the effect of three medicaments used in endodontic regeneration on mechanical properties and chemical structure of radicular dentin. In the first experiment, we investigated longitudinally the effect of medicaments on the indentation properties of the root canal surface of immature teeth using a novel BioDent reference point indenter. A significant difference in the majority of indentation parameters between all groups was found after one-week and one-month application of medicaments (p<0.0001): triple antibiotic paste (TAP) > double antibiotic paste (DAP) > control > calcium hydroxide [Ca(OH)2]. The four-week exposure of dentin to TAP and DAP caused 43% and 31% increase in total indentation distance outcome, respectively. In the second experiment, we investigated longitudinally the effect of medicaments on the chemical structure of immature radicular dentin by measuring the phosphate/amide I ratios of dentin using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. Phosphate/amide I ratios were significantly different between the four groups after one week, two weeks and four week application of medicaments (p<0.0001): Ca(OH)2-treated dentin > untreated dentin > DAP-treated dentin > TAP-treated dentin. In the third experiment, we investigated longitudinally the effect of medicaments on root fracture resistance and microhardness of radicular dentin. For the microhardness, the two-way interaction between group and time was significant (p<0.001). TAP and DAP caused a significant and continuous decrease in dentin microhardness after one and three month application, respectively. The three-month intracanal application of Ca(OH)2 significantly increased the microhardness of root dentin. The time factor had a significant effect on fracture resistance (p<0.001). All medicaments caused significant decrease in fracture resistance ranging between 19%-30% after three month application compared to one week application. The three medicaments used in endodontic regeneration caused significant change in the chemical integrity of the superficial radicular dentin and significantly affected the indentation properties of the root canal surface. Furthermore, the three month intracanal application of medicaments significantly reduced the fracture resistance of roots.Item Effect of intracanal medicaments used in endodontic regeneration procedures on microhardness and chemical structure of dentin(Synapse, 2015-05) Hamdon, Ghaeth Yassen; George, Joseph Eckert; Platt, Jeffrey Allen; Department of Restorative Dentistry, School of DentistryOBJECTIVES: This study was performed to investigate the effects of different intracanal medicaments on chemical structure and microhardness of dentin. MATERIALS AND METHODS: Fifty human dentin discs were obtained from intact third molars and randomly assigned into two control groups and three treatment groups. The first control group received no treatment. The second control group (no medicament group) was irrigated with sodium hypochlorite (NaOCl), stored in humid environment for four weeks and then irrigated with ethylenediaminetetraacetic acid (EDTA). The three treatment groups were irrigated with NaOCl, treated for four weeks with either 1 g/mL triple antibiotic paste (TAP), 1 mg/mL methylcellulose-based triple antibiotic paste (DTAP), or calcium hydroxide [Ca(OH)2] and finally irrigated with EDTA. After treatment, one half of each dentin disc was subjected to Vickers microhardness (n = 10 per group) and the other half was used to evaluate the chemical structure (phosphate/amide I ratio) of treated dentin utilizing attenuated total reflection Fourier transform infrared spectroscopy (n = 5 per group). One-way ANOVA followed by Fisher's least significant difference were used for statistical analyses. RESULTS: Dentin discs treated with different intracanal medicaments and those treated with NaOCl + EDTA showed significant reduction in microhardness (p < 0.0001) and phosphate/amide I ratio (p < 0.05) compared to no treatment control dentin. Furthermore, dentin discs treated with TAP had significantly lower microhardness (p < 0.0001) and phosphate/amide I ratio (p < 0.0001) compared to all other groups. CONCLUSIONS: The use of DTAP or Ca(OH)2 medicaments during endodontic regeneration may cause significantly less microhardness reduction and superficial demineralization of dentin compared to the use of TAP.Item The Longevity of Residual Antibacterial Effect of Dentin Treated with Various Concentrations of Triple Antibiotic Paste(2016) Alyas, Sarmad Mazin; Yassen, Ghaeth H.; Ehrlich, Ygal; Bringas, Josef; Gregory, Richard L.; Warner, Ned Alan; Spolnik, Kenneth J.Introduction: Triple antibiotic paste (TAP, 1000 mg/ml) is composed of equal portions of ciprofloxacin, metronidazole and minocycline and is used as an intracanal dressing to disinfect the infected immature root canal during endodontic regeneration procedures. Lower concentrations of TAP have been recommended to minimize detrimental effects on pulp stem cells. TAP can be retained within the dentin matrix and its continual release confers an antibacterial effect to the dentin. Objective: The aim of this in vitro study was to investigate the residual antibacterial effect of dentin treated with various concentrations of TAP loaded into a gel system. Materials and Methods: Radicular dentin slabs were prepared from human teeth after obtaining IRB approval. The slabs were sterilized and treated with methylcellulose-based TAP of 100 mg/mL, 10 mg/mL, 1 mg/mL, 1.5% NaOCl, placebo paste with no TAP, or a positive control group with pure 1000 mg/mL TAP. Samples in each group were treated with the assigned TAP concentration for three weeks or immersed in 1.5% NaOCl for five minutes (n =18 per group). All samples were then irrigated with sterile water followed by 17% EDTA and incubated in phosphate buffered saline for either 2 or 4 weeks. Samples were then inoculated with Enterococcus faecalis and incubated for an additional 3 weeks. Biofilm formed on each sample was then dislodged and spiral plated to evaluate the bacterial colony-forming units. Data were analyzed using Fisher’s Exact tests and Wilcoxon rank sum tests (α = 0.05). Results: Dentin treated with 10, 100, or 1000 mg/mL of TAP demonstrated significant residual antibacterial effects up to four weeks. However, only 100 mg/mL TAP was able to completely prevent bacterial colonization after four weeks. No considerable residual antibacterial effect was observed in dentin treated with placebo gel, 1 mg/ml TAP or 1.5% NaOCl. Conclusion: At least 10 mg/mL of TAP loaded into a methylcellulose system is required to achieve a substantial residual antibacterial effect for four weeks.Item The use of traditional and novel techniques to determine the hardness and indentation properties of immature radicular dentin treated with antibiotic medicaments followed by ethylenediaminetetraacetic acid(Wolters Kluwer, 2014-10) Yassen, Ghaeth H.; Al‑Angari, Sarah S.; Platt, Jeffrey; Department of Restorative Dentistry, School of DentistryOBJECTIVE: The objective was to investigate the effect of intracanal antibiotic medicaments followed by ethylenediaminetetraacetic acid (EDTA) on the indentation properties and hardness of radicular dentin using a BioDent reference point indenter and a traditional microhardness technique, respectively. MATERIALS AND METHODS: Specimens with intact root canal dentin surfaces and polished radicular dentin specimens were obtained from immature human premolars. Each type of specimen was randomly assigned (n = 10 per group) and treated with either double antibiotic paste (DAP) for 4-week followed by EDTA for 5 min, triple antibiotic paste (TAP) for 4-week followed by EDTA for 5 min, EDTA for 5 min or Hank's balanced salt solution (control). The BioDent reference point indentor and Vickers microhardness tester were used to measure the indentation properties of root canal surfaces and the hardness of polished dentin specimens, respectively. One-way ANOVA followed by Fisher's protected least significant differences were used for statistical analyses. RESULTS: Both types of radicular dentin treated with antibiotic pastes and/or EDTA had a significant increase in the majority of indentation properties and a significant reduction in hardness compared to the untreated dentin. Furthermore, treatment of dentin with antibiotic pastes and EDTA caused significant increases in indentation properties and a significant reduction in hardness compared to EDTA-treated dentin. However, the RPI technique was not able to significantly differentiate between DAP + EDTA and TAP + EDTA-treated dentin. CONCLUSION: Dentin treated with antibiotic medicaments followed by EDTA had a significant increase the indentation properties and significantly reduction in hardness of radicular dentin.