- Browse by Subject
Browsing by Subject "Traumatic brain injury"
Now showing 1 - 10 of 67
Results Per Page
Sort Options
Item A pragmatic, stepped-wedge, hybrid type II trial of interoperable clinical decision support to improve venous thromboembolism prophylaxis for patients with traumatic brain injury(Springer Nature, 2024-08-05) Tignanelli, Christopher J.; Shah, Surbhi; Vock, David; Siegel, Lianne; Serrano, Carlos; Haut, Elliott; Switzer, Sean; Martin, Christie L.; Rizvi, Rubina; Peta, Vincent; Jenkins, Peter C.; Lemke, Nicholas; Thyvalikakath, Thankam; Osheroff, Jerome A.; Torres, Denise; Vawdrey, David; Callcut, Rachael A.; Butler, Mary; Melton, Genevieve B.; Surgery, School of MedicineBackground: Venous thromboembolism (VTE) is a preventable medical condition which has substantial impact on patient morbidity, mortality, and disability. Unfortunately, adherence to the published best practices for VTE prevention, based on patient centered outcomes research (PCOR), is highly variable across U.S. hospitals, which represents a gap between current evidence and clinical practice leading to adverse patient outcomes. This gap is especially large in the case of traumatic brain injury (TBI), where reluctance to initiate VTE prevention due to concerns for potentially increasing the rates of intracranial bleeding drives poor rates of VTE prophylaxis. This is despite research which has shown early initiation of VTE prophylaxis to be safe in TBI without increased risk of delayed neurosurgical intervention or death. Clinical decision support (CDS) is an indispensable solution to close this practice gap; however, design and implementation barriers hinder CDS adoption and successful scaling across health systems. Clinical practice guidelines (CPGs) informed by PCOR evidence can be deployed using CDS systems to improve the evidence to practice gap. In the Scaling AcceptabLE cDs (SCALED) study, we will implement a VTE prevention CPG within an interoperable CDS system and evaluate both CPG effectiveness (improved clinical outcomes) and CDS implementation. Methods: The SCALED trial is a hybrid type 2 randomized stepped wedge effectiveness-implementation trial to scale the CDS across 4 heterogeneous healthcare systems. Trial outcomes will be assessed using the RE2-AIM planning and evaluation framework. Efforts will be made to ensure implementation consistency. Nonetheless, it is expected that CDS adoption will vary across each site. To assess these differences, we will evaluate implementation processes across trial sites using the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework (a determinant framework) using mixed-methods. Finally, it is critical that PCOR CPGs are maintained as evidence evolves. To date, an accepted process for evidence maintenance does not exist. We will pilot a "Living Guideline" process model for the VTE prevention CDS system. Discussion: The stepped wedge hybrid type 2 trial will provide evidence regarding the effectiveness of CDS based on the Berne-Norwood criteria for VTE prevention in patients with TBI. Additionally, it will provide evidence regarding a successful strategy to scale interoperable CDS systems across U.S. healthcare systems, advancing both the fields of implementation science and health informatics.Item Acupuncture use for pain after traumatic brain injury: a NIDILRR Traumatic Brain Injury Model Systems cohort study(Taylor & Francis, 2023) Sodders, Mark D.; Martin, Aaron M.; Coker, Jennifer; Hammond, Flora M.; Hoffman, Jeanne M.; Physical Medicine and Rehabilitation, School of MedicineBackground: Pain after traumatic brain injury (TBI) is common and can become chronic. Acupuncture is an increasingly popular non-pharmacologic option in the United States and is commonly used for pain. Objective: We explored demographics, injury characteristics, and pain characteristics of individuals who reported using acupuncture for chronic pain after TBI. Methods: We analyzed a subset of data collected as part of the Pain After Traumatic Brain Injury collaborative study and identified individuals reporting a history of acupuncture as part of management for chronic pain after TBI. We characterized and compared basic demographic data, pain treatment engagements, pain severity, pain interference, functional independence, and pain locations using descriptive and inferential statistics. Results: Our sample included 1,064 individuals. Acupuncture use (n = 208) was lower proportionally among females, Blacks/African Americans, Asians, less educated, and nonmilitary service members. Insurance type varied between acupuncture and non-acupuncture users. Functional and pain outcomes were similar, but acupuncture users reported a higher number of pain sites. Discussion: Acupuncture is one treatment utilized by individuals with TBI and chronic pain. Further investigation would be helpful to understand the barriers and facilitators of acupuncture use to inform clinical trials to examine the potential benefit of acupuncture on pain outcomes after TBI.Item Age‐dependent white matter disruptions after military traumatic brain injury: Multivariate analysis results from ENIGMA brain injury(Wiley, 2022) Bouchard, Heather C.; Sun, Delin; Dennis, Emily L.; Newsome, Mary R.; Disner, Seth G.; Elman, Jeremy; Silva, Annelise; Velez, Carmen; Irimia, Andrei; Davenport, Nicholas D.; Sponheim, Scott R.; Franz, Carol E.; Kremen, William S.; Coleman, Michael J.; Williams, M. Wright; Geuze, Elbert; Koerte, Inga K.; Shenton, Martha E.; Adamson, Maheen M.; Coimbra, Raul; Grant, Gerald; Shutter, Lori; George, Mark S.; Zafonte, Ross D.; McAllister, Thomas W.; Stein, Murray B.; Thompson, Paul M.; Wilde, Elisabeth A.; Tate, David F.; Sotiras, Aristeidis; Morey, Rajendra A.; Psychiatry, School of MedicineMild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age‐related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non‐negative matrix factorization (NMF) is a data‐driven approach that detects covarying patterns (components) within high‐dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self‐reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta‐Analysis) Military Brain Injury working group. Regressions were used to examine TBI‐ and mTBI‐related associations in NMF‐derived components while adjusting for age, sex, post‐traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age‐dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q < 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age‐dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans.Item Aging with Traumatic Brain Injury: Deleterious Effects of Injury Chronicity Are Most Pronounced in Later Life(Mary Ann Liebert, 2021) Rabinowitz, Amanda R.; Kumar, Raj G.; Sima, Adam; Venkatesan, Umesh M.; Juengst, Shannon B.; O’Neil-Pirozzi, Therese M.; Watanabe, Thomas K.; Goldin, Yelena; Hammond, Flora M.; Dreer, Laura E.; Physical Medicine and Rehabilitation, School of MedicineUnderstanding the effects of age on longitudinal traumatic brain injury (TBI) outcomes requires attention to both chronic and evolving TBI effects and age-related changes in health and function. The present study examines the independent and interactive effects of aging and chronicity on functional outcomes after TBI. We leveraged a well-defined cohort of individuals who sustained a moderate/severe TBI and received acute inpatient rehabilitation at specialized centers with high follow up rate as part of their involvement in the TBI Model Systems longitudinal study. We selected individuals at one of two levels of TBI chronicity (either 2 or 10 years post-injury) and used an exact matching procedure to obtain balanced chronicity groups based on age and other characteristics (N = 1993). We found that both older age and greater injury chronicity were related to greater disability, reduced functional independence, and less community participation. There was a significant age by chronicity interaction, indicating that the adverse effects of greater time post-injury were most pronounced among survivors who were age 75 or older. The inflection point at roughly 75 years of age was corroborated by post hoc analyses, dividing the sample by age at 75 years and examining the interaction between age group and chronicity. These findings point to a need for provision of rehabilitation services in the chronic injury period, particularly for those who are over 75 years old. Future work should investigate the underlying mechanisms of this interaction towards the goal of developing interventions and models of care to promote healthy aging with TBI.Item Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury(Elsevier, 2016-09-06) Shee, Kevin; Lucas, Alexandra; Flashman, Laura A.; Nho, Kwangsik; Tsongalis, Gregory J.; McDonald, Brenna C.; Saykin, Andrew J.; McAllister, Thomas W.; Rhodes, C. Harker; Psychiatry, School of MedicineProblems with attention and short-term learning and memory are commonly reported after mild traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month after injury and 86 healthy controls completed a series of cognitive tests assessing baseline intellectual function, attentional function, and memory, and was genotyped at 13 common single nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory measures (p = 0.001 and 0.002), but not baseline intellectual function or attentional function tasks, were found between the mTBI group and controls. A highly significant protective association between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI patients (p = 0.006 and 0.029 for the long and short delay conditions of the California Verbal Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was protective after mTBI. These results may help elucidate the pathophysiology of cognitive alterations after mTBI, and thus warrant further investigation.Item Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease(Society for Neuroscience, 2002-12) Hartman, Richard E.; Laurer, Helmut; Longhi, Luca; Bales, Kelly R.; Paul, Steven M.; McIntosh, Tracy K.; Holtzman, David M.; Pharmacology and Toxicology, School of MedicineThe epsilon4 allele of apolipoprotein E (APOE) and traumatic brain injury (TBI) are both risk factors for the development of Alzheimer's disease (AD). These factors may act synergistically, in that APOE4+ individuals are more likely to develop dementia after TBI. Because the mechanism underlying these effects is unclear, we questioned whether APOE4 and TBI interact either through effects on amyloid-beta (Abeta) or by enhancing cell death/tissue injury. We assessed the effects of TBI in PDAPP mice (transgenic mice that develop AD-like pathology) expressing human APOE3 (PDAPP:E3), human APOE4 (PDAPP:E4), or no APOE (PDAPP:E-/-). Mice were subjected to a unilateral cortical impact injury at 9-10 months of age and allowed to survive for 3 months. Abeta load, hippocampal/cortical volumes, and hippocampal CA3 cell loss were quantified using stereological methods. All of the groups contained mice with Abeta-immunoreactive deposits (56% PDAPP:E4, 20% PDAPP:E3, 75% PDAPP:E-/-), but thioflavine-S-positive Abeta (amyloid) was present only in the molecular layer of the dentate gyrus in the PDAPP:E4 mice (44%). In contrast, our previous studies showed that in the absence of TBI, PDAPP:E3 and PDAPP:E4 mice have little to no Abeta deposition at this age. After TBI, all of the Abeta deposits present in PDAPP:E3 and PDAPP:E-/- mice were diffuse plaques. In contrast to the effect of APOE4 on amyloid, PDAPP:E3, PDAPP:E4, and PDAPP:E-/- mice did not differ in the amount of brain tissue or cell loss. These data support the hypothesis that APOE4 influences the neurodegenerative cascade after TBI via an effect on Abeta.Item Association between concussion and mental health in former collegiate athletes(Springer, 2014-12) Kerr, Zachary Y.; Evenson, Kelly R.; Rosamond, Wayne D.; Mihalik, Jason P.; Guskiewicz, Kevin M.; Marshall, Stephen W.; Department of Social and Behavioral Sciences, Richard M. Fairbanks School of Public HealthBACKGROUND: The existing research on the association between concussion and mental health outcomes is largely limited to former professional athletes. This cross-sectional study estimated the association between recurrent concussion and depression, impulsivity, and aggression in former collegiate athletes. METHODS: Former collegiate athletes who played between 1987-2012 at a Division I university completed an online questionnaire. The main exposure, total number of self-recalled concussions (sport-related and non-sport-related), were categorized as: zero (referent), one, two, or three or more concussions. The main outcomes were the depression module of The Patient Health Questionnaire (PHQ-9), the Short Form of the Barratt Impulsiveness scale (BIS15); and the 12-item Short Form of the Buss-Perry Aggression Questionnaire (BPAQ-SF). Depression was categorized into a binomial severity classification that differentiated between no or mild depression (PHQ-9 scores <10) and moderate to severe depression (PHQ-9 scores ≥10). Impulsivity and aggression were kept as continuous outcomes. Binomial regression estimated adjusted prevalence ratios (PR). Linear regression estimated adjusted mean differences (MD). RESULTS: Of the 797 respondents with complete data (21.9% completion rate), 38.8% reported at least one concussion. Controlling for alcohol dependence and family history of depression, the prevalence of moderate to severe depression among former collegiate athletes reporting three or more concussions in total was 2.4 times that of those reporting zero concussions [95% Confidence Interval (CI): 1.0, 5.7]. Controlling for alcohol dependence, family history of anxiety, relationship status, obtaining a post-graduate degree, and playing primary college sport professionally, former collegiate athletes reporting two or more concussions in total had higher mean scores for impulsivity, compared to those reporting no concussions (2 concussions MD = 2.7; 95% CI: 1.2, 4.1; 3+ concussions MD = 1.9; 95% CI: 0.6, 3.2). Controlling for alcohol dependence, sex, and relationship status, former collegiate athletes reporting three or more concussions in total had a higher mean score for aggression, compared to those reporting no concussions (MD = 3.0; 95% CI: 1.4, 4.7). CONCLUSIONS: Our study found an association between former concussion and greater risk of severe depression and higher levels of impulsivity and aggression among former collegiate athletes. Additional prospective studies better addressing causality and ascertaining valid lifetime concussion histories and medical histories are needed.Item Associations between repetitive head impact exposure and midlife mental health wellbeing in former amateur athletes(Frontiers Media, 2024-05-28) Buddenbaum, Claire V.; Recht, Grace O.; Rodriguez, Adriana K.; Newman, Sharlene D.; Kawata, Keisuke; Pediatrics, School of MedicineIntroduction: Repetitive head impacts (RHI) have been suggested to increase the risk of developing a neurodegenerative disease, and many of these individuals develop a preceding mental health diagnosis. Given the lack of studies among amateur athletes, this study aimed to examine mental health outcomes in middle-aged amateur athletes who have been exposed to RHI through contact sport participation. Methods: This is a single site, cohort study involving former amateur athletes aged between 30 and 60 with at least 10 years of organized contact or non-contact sport participation. All participants completed demographic and mental health questionnaires. Mental health outcomes included symptoms related to depression, anxiety, post-traumatic stress disorder (PTSD), attention deficit hyperactive disorder (ADHD), and aggression. Self-reported data on mental health diagnoses and associated prescription were elicited and used to estimate odds ratios (OR). Results: Data from 41 contact athletes and 22 age/sex-matched non-contact athletes were available for analysis. The contact group exhibited a 2.25-fold higher likelihood of being diagnosed with mental health disorders and 1.29-fold higher likelihood of using associated medications compared to the non-contact group. The contact group reported significantly higher PTSD-related symptoms [4.61 (0.03,9.2), p=0.05] compared to the non-contact control group. While not statistically significant, the contact group showed increased depressive [2.37 (0.05, 4.79), p=0.07] and ADHD symptoms [4.53 (0.51, 9.57), p=0.08] compared to controls. In a secondary analysis, a distinct trend emerged within the contact group, revealing pronounced elevations in mental health symptoms among individuals with lower socioeconomic status (<$50,000/year) compared to higher income subgroups, and these symptoms decreased as income levels rose [depression: -3.08 (-4.47, -1.7), p<0.001; anxiety: -1.95 (-3.15, -0.76), p=0.002; ADHD: -4.99 (-8.28, -1.69), p=0.004; PTSD: -4.42 (-7.28, -1.57), p=0.003; aggression: -6.19 (-11.02, -1.36), p=0.01]. This trend was absent in the non-contact control group. Discussion: Our data suggest that even individuals at the amateur level of contact sports have an increased likelihood of being diagnosed with mental health disorders or experiencing mental health symptoms compared to non-contact athletes. Our findings indicate that socioeconomic status may have an interactive effect on individuals' mental health, particularly among those with a long history of RHI exposure.Item Brain Rehabilitation, Advanced Imaging, and Neuroscience (BRAIN): An IUPUI Signature Center Initiative (SCI)(Office of the Vice Chancellor for Research, 2015-04-17) Hammond, Flora; Saykin, Andrew J.; Malec, JamesAbstract The Mission of the Indiana Center for Brain Rehabilitation, Advanced Imaging, and Neuroscience (ICBRAIN) is: to develop and disseminate techniques and methodologies for combining advanced neuroimaging, neurogenetics and other neurophysiological measures with precision behavioral measurement to evaluate novel rehabilitation interventions for people with acquired brain injury. Traumatic and other types of acquired brain injury (ABI) affect millions of U.S. citizens each year, many of whom experience persistent disabilities. Over the past decade there has been a notable rise in research activities to address serious gaps in the knowledge base of ABI, including neuroimaging, outcome measurement, and intervention studies to change function. However, brain injury researchers have not yet established solid links between these research agendas. The BRAIN SCI fills this gap in neuroscience by bringing together an interdisciplinary team of clinical researchers to (1) advance basic science and clinical knowledge to the next level of integration, (2) translate the knowledge gained into clinical care for improved patient outcomes, and (3) use the newly integrated knowledge to drive the leading edge of translational research. BRAIN research includes the Indiana Traumatic Brain Injury Model System, funded by the National Institute for Disability and Rehabilitation Research (NIDRR), the InterFACE Center for the study of emotions and interpersonal interactions after neurologic injury, and 12 externally funded research projects. BRAIN research ranges from development of a neurogenetic respository and advanced neuroimaging studies to determine critical elements in recovery from brain injury to intervention studies to improve recovery to a multi-national study of an intervention for phantom limb pain. BRAIN research is transdisciplinary. Disciplines currently involved in BRAIN research include physiatry, neuropsychology, neuroradiology, rehabilitation science, biomedical engineering, and psychiatry. The Indiana University School of Medicine Neuroscience Center provides a home for BRAIN and supports its interdisciplinary Steering Committee. In addition to partnerships with the Neuroscience Center, the Center for Neuroimaging, and the InterFACE Center, BRAIN collaborates with the Rehabilitation Hospital of Indiana, the Stark Neuroscience Institute, and the School of Health and Rehabilitation Sciences. This presentation will describe BRAIN’s mission, vision, values, strategic plan, organization, partnerships, and ongoing research projects in greater detail.Item Cerebral blood flow in acute concussion: preliminary ASL findings from the NCAA-DoD CARE consortium(Springer, 2019-10-01) Wang, Yang; Nencka, Andrew S.; Meier, Timothy B.; Guskiewicz, Kevin; Mihalik, Jason P.; Alison Brooks, M.; Saykin, Andrew J.; Koch, Kevin M.; Wu, Yu-Chien; Nelson, Lindsay D.; McAllister, Thomas W.; Broglio, Steven P.; McCrea, Michael A.; Radiology and Imaging Sciences, School of MedicineSport-related concussion (SRC) has become a major health problem, affecting millions of athletes each year. Despite the increasing occurrence and prevalence of SRC, its underlying mechanism and recovery course have yet to be fully elucidated. The National Collegiate Athletic Association–Department of Defense Grand Alliance: Concussion Assessment, Research and Education (CARE) Consortium is a large-scale, multisite study of the natural history of concussion across multiple sports. The Advanced Research Core (ARC) of CARE is focused on the advanced biomarker assessment of a reduced subject cohort. This paper reports findings from two ARC sites to evaluate cerebral blood flow (CBF) changes in acute SRC, as measured using advanced arterial spin labeling (ASL) magnetic resonance imaging (MRI). We compared relative CBF maps assessed in 24 concussed contact sport athletes obtained at 24–48 h after injury to those of a control group of 24 matched contact sport players. Significantly less CBF was detected in several brain regions in concussed athletes, while clinical assessments also indicated clinical symptom and performance impairments in SRC patients. Correlations were found between decreased CBF in acute SRC and clinical assessments, including Balance Error Scoring System total score and Immediate Post-Concussion Assessment and Cognitive Test memory composite and impulse control composite scores, as well as days from injury to asymptomatic. Although using different ASL MRI sequences, our preliminary results from two sites are consistent with previous reports and suggest that advanced ASL MRI methods might be useful for detecting acute neurobiological changes in acute SRC.