- Browse by Subject
Browsing by Subject "Transgene"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item B cell focused transient immune suppression protocol for efficient AAV readministration to the liver(Elsevier, 2024-02-20) Rana, Jyoti; Herzog, Roland W.; Muñoz-Melero, Maite; Yamada, Kentaro; Kumar, Sandeep R. P.; Lam, Anh K.; Markusic, David M.; Duan, Dongsheng; Terhorst, Cox; Byrne, Barry J.; Corti, Manuela; Biswas, Moanaro; Pediatrics, School of MedicineAdeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.Item Long-Term Efficacy and Safety of RNAi-Mediated Virus Resistance in ‘HoneySweet’ Plum(Frontiers Media, 2021-10-12) Singh, Khushwant; Callahan, Ann M.; Smith, Brenda J.; Malinowski, Tadeusz; Scorza, Ralph; Jarošová, Jana; Beoni, Eva; Polák, Jaroslav; Kundu, Jiban Kumar; Dardick, Chris; Obstetrics and Gynecology, School of MedicineInterfering RNA technology has been established as an effective strategy to protect plants against viral infection. Despite this success, interfering RNA (RNAi) has rarely been applied due to the regulatory barriers that confront genetically engineered plants and concerns over possible environmental and health risks posed by non-endogenous small RNAs. 'HoneySweet' was developed as a virus-resistant plum variety that is protected by an RNAi-mediated process against Sharka disease caused by the plum pox virus. 'HoneySweet' has been approved for cultivation in the United States but not in countries where the plum pox virus is endemic. In this study, we evaluated the long-term efficacy of virus resistance in 'HoneySweet,' the nature and stability of its sRNA profile, and the potential health risks of consuming 'HoneySweet' plums. Graft-challenged 'HoneySweet' trees carrying large non-transgenic infected limbs remained virus-free after more than 10 years in the field, and the viral sequences from the non-transgenic infected limbs showed no evidence of adaptation to the RNAi-based resistance. Small RNA profiling revealed that transgene-derived sRNA levels were stable across different environments and, on average, were more than 10 times lower than those present in symptom-less fruits from virus-infected trees. Comprehensive 90-day mouse feeding studies showed no adverse health impacts in mice, and there was no evidence for potential siRNA off-target pathologies predicted by comparisons of the most abundant transgene-derived sRNAs to the mouse genome. Collectively, the data confirmed that RNAi provides a highly effective, stable, and safe strategy to combat virus diseases in crop plants.