- Browse by Subject
Browsing by Subject "Tractography"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Effects of Angular Resolution and b Value on Diffusion Tensor Imaging in Knee Joint(Sage, 2021) Zhao, Qi; Ridout, Rees P.; Shen, Jikai; Wang, Nian; Radiology and Imaging Sciences, School of MedicineObjective: To investigate the influences of the diffusion gradient directions (angular resolution) and the strength of the diffusion gradient (b value) on diffusion tensor imaging (DTI) metrics and tractography of various connective tissues in knee joint. Design: Two rat knee joints were scanned on a preclinical 9.4-T system using a 3-dimensional diffusion-weighted spin echo pulse sequence. One protocol with b value of 500, 1500, and 2500 s/mm2 were acquired separately using 43 diffusion gradient directions. The other protocol with b value of 1000 s/mm2 was performed using 147 diffusion gradient directions. The in-plane resolution was 45 µm isotropic. Fractional anisotropy (FA) and mean diffusivity (MD) were compared at different angular resolution. Tractography was quantitatively evaluated at different b values and angular resolutions in cartilage, ligament, meniscus, and growth plate. Results: The ligament showed higher FA value compared with growth plate and cartilage. The FA values were largely overestimated at the angular resolution of 6. Compared with FA, MD showed less sensitivity to the angular resolution. The fiber tracking was failed at low angular resolution (6 diffusion gradient directions) or high b value (2500 s/mm2). The quantitative measurements of tract length and track volume were strongly dependent on angular resolution and b value. Conclusions: To obtain consistent DTI outputs and tractography in knee joint, the scan may require a proper b value (ranging from 500 to 1500 s/mm2) and sufficient angular resolution (>14) with signal-to-noise ratio >10.Item Effects of White-Matter Tract Length in Sport-Related Concussion: A Tractography Study from the NCAA-DoD CARE Consortium(Mary Ann Liebert, 2022) Mustafi, Sourajit M.; Yang, Ho-Ching; Harezlak, Jaroslaw; Meier, Timothy B.; Brett, Benjamin L.; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; McCrea, Michael A.; McAllister, Thomas W.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineSport-related concussion (SRC) is an important public health issue. White-matter alterations after SRC are widely studied by neuroimaging approaches, such as diffusion magnetic resonance imaging (MRI). Although the exact anatomical location of the alterations may differ, significant white-matter alterations are commonly observed in long fiber tracts, but are never proven. In the present study, we performed streamline tractography to characterize the association between tract length and white-matter microstructural alterations after SRC. Sixty-eight collegiate athletes diagnosed with acute concussion (24–48 h post-injury) and 64 matched contact-sport controls were included in this study. The athletes underwent diffusion tensor imaging (DTI) in 3.0 T MRI scanners across three study sites. DTI metrics were used for tract-based spatial statistics to map white-matter regions-of-interest (ROIs) with significant group differences. Whole-brain white-mater streamline tractography was performed to extract “affected” white-matter streamlines (i.e., streamlines passing through the identified ROIs). In the concussed athletes, streamline counts and DTI metrics of the affected white-matter fiber tracts were summarized and compared with unaffected white-matter tracts across tract length in the same participant. The affected white-matter tracts had a high streamline count at length of 80–100 mm and high length-adjusted affected ratio for streamline length longer than 80 mm. DTI mean diffusivity was higher in the affected streamlines longer than 100 mm with significant associations with the Brief Symptom Inventory score. Our findings suggest that long fibers in the brains of collegiate athletes are more vulnerable to acute SRC with higher mean diffusivity and a higher affected ratio compared with the whole distribution.Item Geometric Navigation of Axons in a Cerebral Pathway: Comparing dMRI with Tract Tracing and Immunohistochemistry(Oxford University Press, 2018-04-01) Mortazavi, Farzad; Oblak, Adrian L.; Morrison, Will Z.; Schmahmann, Jeremy D.; Stanley, H. Eugene; Wedeen, Van J.; Rosene, Douglas L.; Pathology and Laboratory Medicine, School of MedicineBrain fiber pathways are presumed to follow smooth curves but recent high angular resolution diffusion MRI (dMRI) suggests that instead they follow 3 primary axes often nearly orthogonal. To investigate this, we analyzed axon pathways under monkey primary motor cortex with (1) dMRI tractography, (2) axon tract tracing, and (3) axon immunohistochemistry. dMRI tractography shows the predicted crossings of axons in mediolateral and dorsoventral orientations and does not show axon turns in this region. Axons labeled with tract tracer in the motor cortex dispersed in the centrum semiovale by microscopically sharp axonal turns and/or branches (radii ≤15 µm) into 2 sharply defined orientations, mediolateral and dorsoventral. Nearby sections processed with SMI-32 antibody to label projection axons and SMI-312 antibody to label all axons revealed axon distributions parallel to the tracer axons. All 3 histological methods confirmed preponderant axon distributions parallel with dMRI axes with few axons (<20%) following smooth curves or diagonal orientations. These findings indicate that axons navigate deep white matter via microscopic sharp turns and branches between primary axes. They support dMRI observations of primary fiber axes, as well as the prediction that fiber crossings include navigational events not yet directly resolved by dMRI. New methods will be needed to incorporate coherent microscopic navigation into dMRI of connectivity.Item High angular resolution diffusion imaging (HARDI) of porcine menisci: a comparison of diffusion tensor imaging and generalized q-sampling imaging(AME, 2024) Zhao, Qi; Holt, Abigail; Spritzer, Charles E.; DeFrate, Louis E.; McNulty, Amy L.; Wang, Nian; Radiology and Imaging Sciences, School of MedicineBackground: Diffusion magnetic resonance imaging (MRI) allows for the quantification of water diffusion properties in soft tissues. The goal of this study was to characterize the 3D collagen fiber network in the porcine meniscus using high angular resolution diffusion imaging (HARDI) acquisition with both diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI). Methods: Porcine menisci (n=7) were scanned ex vivo using a three-dimensional (3D) HARDI spin-echo pulse sequence with an isotropic resolution of 500 µm at 7.0 Tesla. Both DTI and GQI reconstruction techniques were used to quantify the collagen fiber alignment and visualize the complex collagen network of the meniscus. The MRI findings were validated with conventional histology. Results: DTI and GQI exhibited distinct fiber orientation maps in the meniscus using the same HARDI acquisition. We found that crossing fibers were only resolved with GQI, demonstrating the advantage of GQI over DTI to visualize the complex collagen fiber orientation in the meniscus. Furthermore, the MRI findings were consistent with conventional histology. Conclusions: HARDI acquisition with GQI reconstruction more accurately resolves the complex 3D collagen architecture of the meniscus compared to DTI reconstruction. In the future, these technologies have the potential to nondestructively assess both normal and abnormal meniscal structure.Item Tractography of Porcine Meniscus Microstructure Using High-Resolution Diffusion Magnetic Resonance Imaging(Frontiers Media, 2022-05-10) Shen, Jikai; Zhao, Qi; Qi, Yi; Cofer, Gary; Johnson, G. Allan; Wang, Nian; Radiology and Imaging Sciences, School of MedicineTo noninvasively evaluate the three-dimensional collagen fiber architecture of porcine meniscus using diffusion MRI, meniscal specimens were scanned using a 3D diffusion-weighted spin-echo pulse sequence at 7.0 T. The collagen fiber alignment was revealed in each voxel and the complex 3D collagen network was visualized for the entire meniscus using tractography. The proposed automatic segmentation methods divided the whole meniscus to different zones (Red-Red, Red-White, and White-White) and different parts (anterior, body, and posterior). The diffusion tensor imaging (DTI) metrics were quantified based on the segmentation results. The heatmap was generated to investigate the connections among different regions of meniscus. Strong zonal-dependent diffusion properties were demonstrated by DTI metrics. The fractional anisotropy (FA) value increased from 0.13 (White-White zone) to 0.26 (Red-Red zone) and the radial diffusivity (RD) value changed from 1.0 × 10-3 mm2/s (White-White zone) to 0.7 × 10-3 mm2/s (Red-Red zone). Coexistence of both radial and circumferential collagen fibers in the meniscus was evident by diffusion tractography. Weak connections were found between White-White zone and Red-Red zone in each part of the meniscus. The anterior part and posterior part were less connected, while the body part showed high connections to both anterior part and posterior part. The tractography based on diffusion MRI may provide a complementary method to study the integrity of meniscus and nondestructively visualize the 3D collagen fiber architecture.Item White matter alterations in early-stage Alzheimer's disease: A tract-specific study(Elsevier, 2019-08-21) Wen, Qiuting; Mustafi, Sourajit M.; Li, Junjie; Risacher, Shannon L.; Tallman, Eileen; Brown, Steven A.; West, John D.; Harezlak, Jaroslaw; Farlow, Martin R.; Unverzagt, Frederick W.; Gao, Sujuan; Apostolova, Liana G.; Saykin, Andrew J.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineIntroduction: Diffusion magnetic resonance imaging may allow for microscopic characterization of white matter degeneration in early stages of Alzheimer's disease. Methods: Multishell Diffusion magnetic resonance imaging data were acquired from 100 participants (40 cognitively normal, 38 with subjective cognitive decline, and 22 with mild cognitive impairment [MCI]). White matter microscopic degeneration in 27 major tracts of interest was assessed using diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging, and q-space imaging. Results: Lower DTI fractional anisotropy and higher radial diffusivity were observed in the cingulum, thalamic radiation, and forceps major of participants with MCI. These tracts of interest also had the highest predictive power to discriminate groups. Diffusion metrics were associated with cognitive performance, particularly Rey Auditory Verbal Learning Test immediate recall, with the highest association observed in participants with MCI. Discussion: While DTI was the most sensitive, neurite orientation dispersion and density imaging and q-space imaging complementarily characterized reduced axonal density accompanied with dispersed and less restricted white matter microstructures.