- Browse by Subject
Browsing by Subject "Tract-based spatial statistics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Acute White-Matter Abnormalities in Sports-Related Concussion: A Diffusion Tensor Imaging Study from the NCAA-DoD CARE Consortium(Mary Ann Liebert, 2018-11-15) Mustafi, Sourajit Mitra; Harezlak, Jaroslaw; Koch, Kevin M.; Nencka, Andrew S.; Meier, Timothy B.; West, John D.; Giza, Christopher C.; DiFiori, John P.; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; Saykin, Andrew J.; McCrea, Michael; McAllister, Thomas W.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineSports-related concussion (SRC) is an important public health issue. Although standardized assessment tools are useful in the clinical management of acute concussion, the underlying pathophysiology of SRC and the time course of physiological recovery after injury remain unclear. In this study, we used diffusion tensor imaging (DTI) to detect white matter alterations in football players within 48 h after SRC. As part of the NCAA-DoD CARE Consortium study of SRC, 30 American football players diagnosed with acute concussion and 28 matched controls received clinical assessments and underwent advanced magnetic resonance imaging scans. To avoid selection bias and partial volume effects, whole-brain skeletonized white matter was examined by tract-based spatial statistics to investigate between-group differences in DTI metrics and their associations with clinical outcome measures. Mean diffusivity was significantly higher in brain white matter of concussed athletes, particularly in frontal and subfrontal long white matter tracts. In the concussed group, axial diffusivity was significantly correlated with the Brief Symptom Inventory and there was a similar trend with the symptom severity score of the Sport Concussion Assessment Tool. In addition, concussed athletes with higher fractional anisotropy performed better on the cognitive component of the Standardized Assessment of Concussion. Overall, the results of this study are consistent with the hypothesis that SRC is associated with changes in white matter tracts shortly after injury, and these differences are correlated clinically with acute symptoms and functional impairments.Item Cognitive decline and white matter changes in mesial temporal lobe epilepsy(Wolters Kluwer, 2018-08) Xu, Shang-wen; Xi, Ji-hui; Lin, Chen; Wang, Xiao-yang; Fu, Li-yuan; Kralik, Stephen Francis; Chen, Zi-qian; Radiology and Imaging Sciences, School of MedicineNoninvasive imaging plays a pivotal role in assessing the brain structural and functional changes in presurgical mesial temporal lobe epilepsy (MTLE) patients. Our goal was to study the relationship between the changes of cerebral white matter (WM) and cognitive functions in MTLE patients.Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) MRI were performed on 24 right-handed MTLE patients (12 with left MTLE and 12 with right MTLE) and 12 matching healthy controls. Gray matter (GM), WM, and whole brain (WB) volumes were measured with VBM while fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were measured with TBSS. All patients and controls also underwent Montreal Cognitive Assessment (MoCA) before MRI.WM volume and the ratio of WM volume versus WB volume were significantly lower in MTLE patients compared with controls. WM volume in MTLE patients had a positive correlation with MoCA score (r = 0.71, P < .001) and a negative correlation with the duration of epilepsy (r = -0.693, P < .001). Volumetric differences were mainly located in the corpus callosum, uncinate fasciculus, inferior longitudinal fasciculus, and superior longitudinal fasciculus. FA of both left MTLE and right MTLE groups was significantly decreased, while MD, AD, and RD were significantly increased. Most left MTLE patients showed bilateral WM fiber tract changes versus ipsilateral changes for right MTLE patients.Changes in DTI parameters and WM volume were found in MTLE patients and more ipsilateral changes were seen with right-sided MTLE. Cognitive changes of MTLE patients were found to be correlated with the changes in WM structure. These findings not only provide useful information for lateralization of the seizure focus but can also be used to explain functional connectivity disorders which may be an important physiological basis for cognitive changes in patients with MTLE.