ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Tooth Movement Techniques -- Instrumentation"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Effects of First-and Second-Order Gable Bend Angles on Forces and Moments Generated by Triangular Loops
    (2002) Le, Yen P.; Chen, Jie; Katona, Thomas R.; Baldwin, James J.; Hohlt, William F.; Shanks, James C.
    Many orthodontic spring designs have been used to close extraction spaces. The triangular loop is an often-used spring in the Graduate Orthodontic Clinic at the Indiana University School of Dentistry. Previous studies of the triangular loop have focused on its geometry and dimensions with various in-plan (second-order) gable bend angles. To date, no investigator has studied the effect of out-of-plane (first-order) gable angle on the in-plane forces and moments generated by the triangular loop. Thus, the purposes of this study are: (1) to determine the effect of first-order gable bend angles on the forces and moments produced by triangular loops and (2) to show that the effects of first- and second-order gable bends are independent of each other. Three hundred sixty triangular loops were divided equally into 36 groups with combinations of 0°, 15°, and 30° first- and second-order gable bend angles. Force and moment components along three mutually perpendicular axes (x, y, and z) were measured. The x, y, and z axes are the mesiodistal, occlusogingival, and buccolingual axes respectively. Separate statistical analyses were performed for Fx, Fy, Fz, Mx, My, Mz, Mz/Fx and My/Fx. Comparisons were made between the 36 groups and between activation distances. The Sidak multiple comparison adjustment method was used to control the overall confidence level at 95%. The hypotheses are (1) the first-order gable bends do not affect the forces and moments generated by triangular loops, and (2) the first and second-order behaviors are independent of each other. The results support the first hypothesis partially. It was shown that the magnitude of Fx and Mz/Fx increased significantly with second-order gable bends but did not change with first-order bends. The magnitude of My/Fx increased significantly with increasing first-order gable bend angles but did not change significantly with second-order gable bends. The second hypothesis is also accepted. The effects of first- and second-order gable angles are independent of each other. Both first- and second-order gable angles are needed to have an appropriate force/moment system for tooth translation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University