- Browse by Subject
Browsing by Subject "Tissues"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue(Springer Nature, 2021-02-10) Laurence, Devin W.; Homburg, Hannah; Yan, Feng; Tang, Qinggong; Fung, Kar‑Ming; Bohnstedt, Bradley N.; Holzapfel, Gerhard A.; Lee, Chung‑Hao; Neurological Surgery, School of MedicineIntracranial aneurysms (ICAs) are focal dilatations that imply a weakening of the brain artery. Incidental rupture of an ICA is increasingly responsible for significant mortality and morbidity in the American’s aging population. Previous studies have quantified the pressure-volume characteristics, uniaxial mechanical properties, and morphological features of human aneurysms. In this pilot study, for the first time, we comprehensively quantified the mechanical, collagen fiber microstructural, and morphological properties of one resected human posterior inferior cerebellar artery aneurysm. The tissue from the dome of a right posterior inferior cerebral aneurysm was first mechanically characterized using biaxial tension and stress relaxation tests. Then, the load-dependent collagen fiber architecture of the aneurysm tissue was quantified using an in-house polarized spatial frequency domain imaging system. Finally, optical coherence tomography and histological procedures were used to quantify the tissue’s microstructural morphology. Mechanically, the tissue was shown to exhibit hysteresis, a nonlinear stress-strain response, and material anisotropy. Moreover, the unloaded collagen fiber architecture of the tissue was predominantly aligned with the testing Y-direction and rotated towards the X-direction under increasing equibiaxial loading. Furthermore, our histological analysis showed a considerable damage to the morphological integrity of the tissue, including lack of elastin, intimal thickening, and calcium deposition. This new unified characterization framework can be extended to better understand the mechanics-microstructure interrelationship of aneurysm tissues at different time points of the formation or growth. Such specimen-specific information is anticipated to provide valuable insight that may improve our current understanding of aneurysm growth and rupture potential.Item Single-cell screening and quantification of transcripts in cancer tissues by second-harmonic generation microscopy(Society of Photo-Optical Instrumentation Engineers (SPIE), 2015-09) Liu, Jing; Damayanti, Nur P.; Cho, Il-Hoon; Polar, Yesim; Badve, Sunil; Irudayaraj, Joseph M. K.; Department of Pathology and Laboratory Medicine, IU School of MedicineFluorescence-based single molecule techniques to interrogate gene expression in tissues present a very low signal-to-noise ratio due to the strong autofluorescence and other background signals from tissue sections. This report presents a background-free method using second-harmonic generation (SHG) nanocrystals as probes to quantify the messenger RNA (mRNA) of human epidermal growth receptor 2 (Her2) at single molecule resolution in specific phenotypes at single-cell resolution directly in tissues. Coherent SHG emission from individual barium titanium oxide (BTO) nanoprobes was demonstrated, allowing for a stable signal beyond the autofluorescence window. Her2 surface marker and Her2 mRNA were specifically labeled with BTO probes, and Her2 mRNA was quantified at single copy sensitivity in Her2 expressing phenotypes directly in cancer tissues. Our approach provides the first proof of concept of a cross-platform strategy to probe tissues at single-cell resolution in situ.