- Browse by Subject
Browsing by Subject "Tissue plasminogen activator"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Interferon-β modulates microglial polarization to ameliorate delayed tPA-exacerbated brain injury in ischemic stroke(Frontiers Media, 2023-03-31) Kuo, Ping-Chang; Weng, Wen-Tsan; Scofield, Barbara A.; Paraiso, Hallel C.; Bojrab, Paul; Kimes, Brandon; Yu, I-Chen Ivorine; Yen, Jui-Hung Jimmy; Microbiology and Immunology, School of MedicineTissue plasminogen activator (tPA) is the only FDA-approved drug for the treatment of ischemic stroke. Delayed tPA administration is associated with increased risks of blood-brain barrier (BBB) disruption and hemorrhagic transformation. Studies have shown that interferon beta (IFNβ) or type I IFN receptor (IFNAR1) signaling confers protection against ischemic stroke in preclinical models. In addition, we have previously demonstrated that IFNβ can be co-administered with tPA to alleviate delayed tPA-induced adverse effects in ischemic stroke. In this study, we investigated the time limit of IFNβ treatment on the extension of tPA therapeutic window and assessed the effect of IFNβ on modulating microglia (MG) phenotypes in ischemic stroke with delayed tPA treatment. Mice were subjected to 40 minutes transient middle cerebral artery occlusion (MCAO) followed by delayed tPA treatment in the presence or absence of IFNβ at 3h, 4.5h or 6h post-reperfusion. In addition, mice with MG-specific IFNAR1 knockdown were generated to validate the effects of IFNβ on modulating MG phenotypes, ameliorating brain injury, and lessening BBB disruption in delayed tPA-treated MCAO mice. Our results showed that IFNβ extended tPA therapeutic window to 4.5h post-reperfusion in MCAO mice, and that was accompanied with attenuated brain injury and lessened BBB disruption. Mechanistically, our findings revealed that IFNβ modulated MG polarization, leading to the suppression of inflammatory MG and the promotion of anti-inflammatory MG, in delayed tPA-treated MCAO mice. Notably, these effects were abolished in MG-specific IFNAR1 knockdown MCAO mice. Furthermore, the protective effect of IFNβ on the amelioration of delayed tPA-exacerbated ischemic brain injury was also abolished in these mice. Finally, we identified that IFNβ-mediated modulation of MG phenotypes played a role in maintaining BBB integrity, because the knockdown of IFNAR1 in MG partly reversed the protective effect of IFNβ on lessening BBB disruption in delayed tPA-treated MCAO mice. In summary, our study reveals a novel function of IFNβ in modulating MG phenotypes, and that may subsequently confer protection against delayed tPA-exacerbated brain injury in ischemic stroke.Item Non-traditional biomarkers and incident diabetes in the Diabetes Prevention Program: comparative effects of lifestyle and metformin interventions(Springer Verlag, 2018-10-17) Goldberg, Ronald B.; Bray, George A.; Marcovina, Santica M.; Mather, Kieren J.; Orchard, Trevor J.; Perreault, Leigh; Temprosa, Marinella; Medicine, School of MedicineWe compared the associations of circulating biomarkers of inflammation, endothelial and adipocyte dysfunction and coagulation with incident diabetes in the placebo, lifestyle and metformin intervention arms of the Diabetes Prevention Program, a randomised clinical trial, to determine whether reported associations in general populations are reproduced in individuals with impaired glucose tolerance, and whether these associations are independent of traditional diabetes risk factors. We further investigated whether biomarker-incident diabetes associations are influenced by interventions that alter pathophysiology, biomarker concentrations and rates of incident diabetes. METHODS: The Diabetes Prevention Program randomised 3234 individuals with impaired glucose tolerance into placebo, metformin (850 mg twice daily) and intensive lifestyle groups and showed that metformin and lifestyle reduced incident diabetes by 31% and 58%, respectively compared with placebo over an average follow-up period of 3.2 years. For this study, we measured adiponectin, leptin, tissue plasminogen activator (as a surrogate for plasminogen activator inhibitor 1), high-sensitivity C-reactive protein, IL-6, monocyte chemotactic protein 1, fibrinogen, E-selectin and intercellular adhesion molecule 1 at baseline and at 1 year by specific immunoassays. Traditional diabetes risk factors were defined as family history, HDL-cholesterol, triacylglycerol, BMI, fasting and 2 h glucose, HbA1c, systolic blood pressure, inverse of fasting insulin and insulinogenic index. Cox proportional hazard models were used to assess the effects of each biomarker on the development of diabetes assessed semi-annually and the effects of covariates on these. RESULTS: E-selectin, (HR 1.19 [95% CI 1.06, 1.34]), adiponectin (0.84 [0.71, 0.99]) and tissue plasminogen activator (1.13 [1.03, 1.24]) were associated with incident diabetes in the placebo group, independent of diabetes risk factors. Only the association between adiponectin and diabetes was maintained in the lifestyle (0.69 [0.52, 0.92]) and metformin groups (0.79 [0.66, 0.94]). E-selectin was not related to diabetes development in either lifestyle or metformin groups. A novel association appeared for change in IL-6 in the metformin group (1.09 [1.021, 1.173]) and for baseline leptin in the lifestyle groups (1.31 [1.06, 1.63]). CONCLUSIONS/INTERPRETATION: These findings clarify associations between an extensive group of biomarkers and incident diabetes in a multi-ethnic cohort with impaired glucose tolerance, the effects of diabetes risk factors on these, and demonstrate differential modification of associations by interventions. They strengthen evidence linking adiponectin to diabetes development, and argue against a central role for endothelial dysfunction. The findings have implications for the pathophysiology of diabetes development and its prevention.Item Successful conduct of an acute stroke clinical trial during COVID(Public Library of Science, 2021-01-15) Yamal, Jose-Miguel; Parker, Stephanie A.; Jacob, Asha P.; Rajan, Suja S.; Bowry, Ritvij; Bratina, Patti; Wang, Mengxi; Nour, May; Mackey, Jason; Collins, Sarah; Jones, William; Schimpf, Brandi; Ornelas, David; Spokoyny, Ilana; Fung Im, Jenny; Gilbert, Greg; Eisshofer, Michael; Grotta, James C.; Neurology, School of MedicineMost clinical research stopped during COVID due to possible impact on data quality and personnel safety. We aimed to assess the impact of COVID on acute stroke clinical trial conduct at sites that continued to enroll patients during the pandemic. BEST-MSU is an ongoing study of Mobile Stroke Units (MSU) vs standard management of tPA-eligible acute stroke patients in the pre-hospital setting. MSU personnel include a vascular neurologist via telemedicine, and a nurse, CT technologist, paramedics and emergency medicine technicians on-board. During COVID, consent, 90-day modified Rankin Scale (mRS) and EQ5D were obtained by phone instead of in-person, but other aspects of management were similar to the pre-COVID period. We compared patient demographics, study metrics, and infection of study personnel during intra- vs pre-COVID eras. Five of 6 BEST-MSU sites continued to enroll during COVID. There were no differences in intra- (n = 57) vs pre- (n = 869) COVID enrolled tPA eligible patients' age, sex, race (38.6% vs 38.0% Black), ethnicity (15.8% vs 18.6% Hispanic), or NIHSS (median 11 vs 9). The percent of screened patients enrolled and adjudicated tPA eligible declined from 13.6% to 6.6% (p < .001); study enrollment correlated with local stay-at-home and reopening orders. There were no differences in alert to MSU arrival or arrival to tPA times, but MSU on-scene time was 5 min longer (p = .01). There were no differences in ED door to CT, tPA treatment or thrombectomy puncture times, hospital length of stay, discharge disposition, or remote vs in-person 90-day mRS or EQ5D. One MSU nurse tested positive but did not require hospitalization. Clinical research in the pre-hospital setting can be carried out accurately and safely during a pandemic. tPA eligibility rates declined, but otherwise there were no differences in patient demographics, deterioration of study processes, or serious infection of study staff.Item The islet tissue plasminogen activator/plasmin system is upregulated with human islet amyloid polypeptide aggregation and protects beta cells from aggregation-induced toxicity(Springer, 2024) Esser, Nathalie; Hogan, Meghan F.; Templin, Andrew T.; Akter, Rehana; Fountaine, Brendy S.; Castillo, Joseph J.; El‑Osta, Assam; Manathunga, Lakshan; Zhyvoloup, Alexander; Raleigh, Daniel P.; Zraika, Sakeneh; Hull, Rebecca L.; Kahn, Steven E.; Medicine, School of MedicineAims/hypothesis: Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes. Methods: The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red. Plat expression was also determined in hIAPP-treated primary islet endothelial cells, bone marrow-derived macrophages (BMDM) and INS-1 cells, in order to determine the islet cell type(s) producing tPA in response to hIAPP aggregation. Cell-free thioflavin-T assays and MS were used to respectively monitor hIAPP aggregation kinetics and investigate plasmin cleavage of hIAPP. Cell viability was assessed in INS-1 beta cells treated with hIAPP with or without plasmin. Finally, to confirm the findings in human samples, PLAT expression was measured in freshly isolated islets from donors with and without type 2 diabetes. Results: In isolated islets from transgenic mice, islet Plat expression and plasmin activity increased significantly with the process of amyloid deposition (p≤0.01, n=5); these effects were not observed in islets from non-transgenic mice and were blocked by Congo Red (p≤0.01, n=4). In response to hIAPP exposure, Plat expression increased in BMDM and INS-1 cells vs vehicle-treated cells (p≤0.05, n=4), but not in islet endothelial cells. Plasmin reduced hIAPP fibril formation in a dose-dependent manner in a cell-free system, and restored hIAPP-induced loss of cell viability in INS-1 beta cells (p≤0.01, n=5). Plasmin cleaved monomeric hIAPP, inducing a rapid decrease in the abundance of full-length hIAPP and the appearance of hIAPP 1-11 and 12-37 fragments. hIAPP 12-37, which contains the critical amyloidogenic region, was not toxic to INS-1 cells. Finally, PLAT expression was significantly increased by 2.4-fold in islets from donors with type 2 diabetes (n=4) vs islets from donors without type 2 diabetes (n=7) (p≤0.05). Conclusions/interpretation: The fibrinolytic system is upregulated in islets with hIAPP aggregation. Plasmin rapidly degrades hIAPP, limiting its aggregation into amyloid and thus protecting beta cells from hIAPP-induced toxicity. Thus, increasing islet plasmin activity might be a strategy to limit beta cell loss in type 2 diabetes.