ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Tissue factor"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Host cell invasion by Staphylococcus aureus stimulates the shedding of microvesicles
    (Elsevier B.V., 2013-03-22) DeWalt, Robin I.; Petkovich, Daniel A.; Zahrt, Ashley N.; Bruns, Heather A.; McDowell, Susan A.; Department of Medicine, IU School of Medicine
    During severe sepsis, microvesicles that are positive for tissue factor (TF) are at increased levels within blood and in pulmonary lavage. These microvesicles potentially disperse TF, the major initiator of the coagulation cascade, throughout multiple organ systems, initiating fibrin deposition and resultant ischemia. The source of these microvesicles has remained incompletely defined. Although TF+ microvesicles are shed from cells that express nascent TF transcript in response to injury, recent findings revealed that circulating, full-length TF protein is detectable prior to these nascent transcripts. This finding suggested that the protein is released from constitutive sources as an acute response. We examined whether Staphylococcus aureus, the Gram-positive bacteria that is emerging as one of the most common etiologic agents in sepsis, is capable of stimulating the release of TF+ microvesicles from a pulmonary cell line that constitutively expresses TF protein. We found that host cell invasion stimulated an acute release of TF+ microvesicles and that these microvesicles mediated the transfer of the protein to TF-negative endothelial cells. We also found that transfer was inhibited by cholesterol-lowering simvastatin. Taken together, our findings reveal that S. aureus pathogenesis extends to the acute release of TF+ microvesicles and that inhibiting dispersal by this mechanism may provide a therapeutic target.
  • Loading...
    Thumbnail Image
    Item
    Vaccination against prostate cancer using a live tissue factor deficient cell line in Lobund–Wistar rats
    (Springer, 2007) Heinrich, Julie E.; Pollard, Morris; Wolter, William A.; Liang, Zhong; Song, Hui; Rosen, Elliot D.; Suckow, Mark A.; Medical and Molecular Genetics, School of Medicine
    Reducing expression of the tissue factor gene in prostate adenocarcinoma cells (PAIII) results in a cell line that, in vivo, mimics the growth of wildtype (wt) PAIII. However, instead of continuing to grow and metastasize as wt PAIII tumors do, tissue factor deficient PAIII (TFD PAIII) masses spontaneously regress after several weeks. Although whole cell vaccines are typically inactivated prior to administration to prevent proliferation within the host, numerous studies have suggested that exposure to live, attenuated, whole tumor cells, and the extracellular microenvironment they recruit, increases immunotherapeutic potential. Here, we provide support for this notion, and a strategy through which to implement it, by demonstrating that subcutaneous vaccinations with the TFD PAIII protect the Lobund-Wistar rat against subsequent wt PAIII cell challenge. TFD PAIII immunized rats suffered significantly less metastasis of wt PAIII challenge tumors compared to unvaccinated naïve controls rats. These results offer the intriguing possibility that the TFD PAIII vaccine is an effective system for the prevention and, possibly, the treatment of prostate cancer.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University