ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Tissue damage"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    302 Diagnostic Evidence Gauge of Spatial Transcriptomics (DEGAS-ST): Using transfer learning to map clinical data to spatial transcriptomics in prostate cancer
    (Cambridge University Press, 2024-04-03) Couetil, Justin; Alomari, Ahmed K.; Zhang, Jie; Huang, Kun; Johnson, Travis S.; Medical and Molecular Genetics, School of Medicine
    OBJECTIVES/GOALS: The 'field effect' is a concept in pathology that pre-malignant tissue changes forecast health. Spatial transcriptomics could detect these changes earlier than histopathology, suggesting new early cancer screening methods. Knowing how normal tissue damage relates to cancer’s origin and progression may improve long-term outcomes. METHODS/STUDY POPULATION: We trained DEGAS, our machine learning framework, with prostate cancer data, combining both general cancer patterns and in-depth genetic information from individual tumors. The Tumor Cancer Genome Atlas (TCGA) shows how gene patterns in tumors relate to patient outcomes, emphasizing the differences between tumors from different patients (intertumor). On the other hand, spatial transcriptomics (ST) shows the genetic variety within a single tumor (intratumor) but has limited samples, making it hard to know which genetic differences are important for treatment. DEGAS bridges these areas by finding tissue sections that resemble those in TCGA profiles and are key indicators of patient survival. DEGAS serves as a valuable tool for generating clinically-important hypotheses. RESULTS/ANTICIPATED RESULTS: DEGAS identified benign-appearing glands in a normal prostate as being highly associated with poor progression-free survival. These glands have transcriptional signatures similar to high-grade prostate cancer. We confirmed this finding in a separate prostate cancer ST dataset. By integrating single cell (SC) data we demonstrated that cells annotated as cancerous in the SC data map to regions of benign glands in the ST dataset. We pinpoint several genes, chiefly Microseminoprotein-β (MSMB, PSP94), where reduced expression is highly correlated with poor progression-free survival. Cell type specific differential expression analysis further revealed that loss of MSMB expression associated with poor outcomes occurs specifically in luminal epithelia, the putative progenitor of prostate cancer. DISCUSSION/SIGNIFICANCE: DEGAS reveals that normal-appearing tissue can be highly-associated with tumor progression and underscores the importance of the 'field effect' in cancer research. Traditional analysis may miss such nuance, hiding key transitional cell states. Validating gene markers could boost early cancer detection and understanding of metastasis.
  • Loading...
    Thumbnail Image
    Item
    Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation
    (Frontiers Media S.A., 2015-01-28) Ramadan, Abdularouf; Paczesny, Sophie; Department of Pediatrics, IU School of Medicine
    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient's antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University