- Browse by Subject
Browsing by Subject "Tissue Scaffolds"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Bimix antimicrobial scaffolds for regenerative endodontics(Elsevier, 2014-11) Palasuk, Jadesada; Kamocki, Krzysztof; Hippenmeyer, Lauren; Platt, Jeffrey A.; Spolnik, Kenneth J.; Gregory, Richard L.; Bottino, Marco C.; Department of Restorative Dentistry, IU School of DentistryINTRODUCTION: Eliminating and/or inhibiting bacterial growth within the root canal system has been shown to play a key role in the regenerative outcome. The aim of this study was to synthesize and determine in vitro both the antimicrobial effectiveness and cytocompatibility of bimix antibiotic-containing polydioxanone-based polymer scaffolds. METHODS: Antibiotic-containing (metronidazole [MET] and ciprofloxacin [CIP]) polymer solutions (distinct antibiotic weight ratios) were spun into fibers as a potential mimic to the double antibiotic paste (DAP, a MET/CIP mixture). Fiber morphology, chemical characteristics, and tensile strength were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, and tensile testing, respectively. Antimicrobial efficacy was tested over time (aliquot collection) against Enterococcus faecalis (Ef), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn). Similarly, cytotoxicity was evaluated in human dental pulp stem cells. Data were statistically analyzed (P < .05). RESULTS: Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed that electrospinning was able to produce antibiotic-containing fibers with a diameter mostly in the nanoscale. The tensile strength of 1:1MET/CIP scaffolds was significantly (P < .05) higher than pure polydioxanone (control). Meanwhile, all other groups presented similar strength as the control. Aliquots obtained from antibiotic-containing scaffolds inhibited the growth of Ef, Pg, and Fn, except pure MET, which did not show an inhibitory action toward Pg or Fn. Antibiotic-containing aliquots promoted slight human dental pulp stem cell viability reduction, but none of them were considered to be cytotoxic. CONCLUSIONS: Our data suggest that the incorporation of multiple antibiotics within a nanofibrous scaffold holds great potential toward the development of a drug delivery system for regenerative endodontics.Item Effects of DynaMatrix® Membrane on Angiogenic Cytokine Expression From Human Dental Pulp Stem Cells(2013) Baker, Ryan William; Spolnik, Kenneth Jacob, 1950-; Ehrlich, Ygal; Vail, Mychel Macapagal, 1969-; Song, Fengyu; Legan, Joseph J.; Zunt, Susan L., 1951-; Windsor, L. JackThe aim of this current study was to determine if the exposure of human dental pulp stem cells (HDPSC) to the DynaMatrix membrane will result in an increased production of angiogenic cytokines that are critical for pulp/root regeneration. Angiogenesis cytokine arrays have been established as a viable method for assessing expression of cytokines.20 HDPSC were chosen as they are expected to be found in the apical papilla and the infected immature root canal system of teeth that current regenerative endodontic techniques are designed to treat.Item Effects of DynaMatrix® on angiogenic cytokine expression from human dental pulp fibroblasts : an in vitro study(2015) Adams, Joseph Benjamin; Spolnik, Kenneth Jacob, 1950-; Erhlich, Ygal; Bringas, Josef; Warner, Ned A. (Ned Alan); Zunt, Susan L., 1951-; Windsor, L. JackEFFECTS OF DYNAMATRIX® ON ANGIOGENIC CYTOKINE EXPRESSION FROM HUMAN DENTAL PULP FIBROBLASTS: AN IN VITRO STUDY by Joseph Benjamin Adams Indiana University School of Dentistry Indianapolis, IN Introduction: An exogenous scaffold may lead to more predictable pulp tissue regeneration and continued root formation in a regenerative endodontic procedure. DynaMatrix® is a natural membrane scaffold made of porcine small intestine, currently used in periodontal regenerative surgeries. Objective: The purpose of this study was to investigate if human dental pulp fibroblasts (HDPFs) seeded on DynaMatrix® membrane would result in an increase in the expression of angiogenic cytokines. Materials and Methods: HDPFs (75,000 per well) were seeded in 6-well plates. Three groups were tested: Group 1 (C): HDPFs in 70 media only; Group 2 (M): DynaMatrix® (Cook Biotech, Indianapolis, IN) alone in media; and Group 3 (C+M): HDPFs seeded on DynaMatrix® membranes. After 72 hours of incubation in serum positive, the conditioned media were collected and analyzed for the expression of 20 angiogenic cytokines utilizing RayBiotech Inc., arrays per the manufacturer’s instruction. The data were analyzed by ANOVA. Results: Group M was significantly higher than C for bFGF (p = 0.0023). C+M was significantly higher than M for ANG (p = 0.0104); GRO (p = 0.0003); IFN-γ (p = 0.0023); IL-6 (p = 0.0003); IL-8 (p = 0.0003); Leptin (p = 0.0003); MCP-1 (p = 0.0104); TIMP-1 (p = 0.0190); TIMP-2 (0.0123). C was significantly higher than C+M for ANG (p = 0.0104); MCP-1 (p = 0.0104); and THPO (p = 0.0308). Cytokines such as b-FGF, ANG, and leptin promote angiogenesis, and stimulate migration and proliferation of cells. Conclusion: The cytokine expression profile from the cells seeded on DynaMatrix® suggests that it might be a suitable scaffold for regenerative endodontic procedures. It could improve vascularization by increasing angiogenic cytokines in the microenvironment of the treated root canal and supporting tissue regeneration.Item Stem cell-derived tissue-engineered constructs for hemilaryngeal reconstruction(Sage Publications, 2014-02) Halum, Stacey L.; Bijangi-Vishehsaraei, Khadijeh; Zhang, Hongji; Sowinski, John; Bottino, Marco C.; Department of Otolaryngology--Head and Neck Surgery, IU School of MedicineOBJECTIVES: As an initial step toward our goal of developing a completely tissue-engineered larynx, the aim of this study was to describe and compare three strategies of creating tissue-engineered muscle-polymer constructs for hemilaryngeal reconstruction. METHODS: Cartilage-mimicking polymer was developed from electrospun poly(D,L-lactide-co-ε-caprolactone) (PCL). Primary muscle progenitor cell cultures were derived from syngeneic F344 rat skeletal muscle biopsies. Twenty F344 rats underwent resection of the outer hemilaryngeal cartilage with the underlying laryngeal adductor muscle. The defects were repaired with muscle stem cell-derived muscle-PCL constructs (5 animals), myotube-derived muscle-PCL constructs (5 animals), motor end plate-expressing muscle-PCL constructs (5 animals), or PCL alone (controls; 5 animals). The outcome measures at 1 month included animal survival, muscle thickness, and innervation status as determined by electromyography and immunohistochemistry. RESULTS: All of the animals survived the 1-month implant period and had appropriate weight gain. The group that received motor end plate-expressing muscle-PCL constructs demonstrated the greatest muscle thickness and the strongest innervation, according to electromyographic activity and the percentage of motor end plates that had nerve contact. CONCLUSIONS: Although all of the tissue-engineered constructs provided effective reconstruction, those that expressed motor end plates before implantation yielded muscle that was more strongly innervated and viable. This finding suggests that this novel approach may be useful in the development of a tissue-engineered laryngeal replacement.