- Browse by Subject
Browsing by Subject "Tidal volume"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Improved simulated ventilation with a novel tidal volume and peak inspiratory pressure controlling bag valve mask: A pilot study(Elsevier, 2023-01-05) Merrell, Jonathan G.; Scott, Adam C.; Stambro, Ryan; Boukai, Amit; Cooper, Dylan D.; Pediatrics, School of MedicineIntroduction: The dangers of hyperventilation during resuscitation are well known. Traditional bag valve mask (BVM) devices rely on end users to control tidal volume (Vt), rate, and peak inspiratory pressures (PIP) of ventilation. The Butterfly BVM (BBVM) is a novel device intending to give greater control over these parameters. The objective of this pilot study was to compare the BBVM against a traditional device in simulated resuscitations. Methods: Senior emergency medicine residents and fellows participated in a three-phase simulation study. First, participants used the Ambu Spur II BVM in adult and pediatric resuscitations. Vt, PIP, and rate were recorded. Second, participants repeated the resuscitations after a brief introduction to the BBVM. Third, participants were given a longer introduction to the BBVM and were tested on their ability to adjust its various settings. Results: Nineteen participants were included in the adult arm of the study, and 16 in the pediatric arm. The BBVM restricted Vt delivered to a range of 4-8 ml/kg vs 9 ml/kg and 13 ml/kg (Ambu adult and Ambu pediatric respectively). The BBVM never exceeded target minute ventilations while the Ambu BVMs exceeded target minute ventilation in 2 of 4 tests. The BBVM failed to reliably reach higher PIP targets in one test, while the pediatric Ambu device had 76 failures of excessive PIP compared to 2 failures by the BBVM. Conclusion: The BBVM exceeded the Ambu Spur II in delivering appropriate Vts and in keeping PIPs below target maximums to simulated adult and pediatric patients in this pilot study.Item S-Nitroso-L-Cysteine Stereoselectively Blunts the Deleterious Effects of Fentanyl on Breathing While Augmenting Antinociception in Freely-Moving Rats(Frontiers Media, 2022-05-26) Getsy, Paulina M.; Baby, Santhosh M.; Gruber, Ryan B.; Gaston, Benjamin; Lewis, Tristan H.J.; Grossfield, Alan; Seckler, James M.; Hsieh, Yee-Hsee; Bates, James N.; Lewis, Stephen J.; Pediatrics, School of MedicineEndogenous and exogenously administered S-nitrosothiols modulate the activities of central and peripheral systems that control breathing. We have unpublished data showing that the deleterious effects of morphine on arterial blood-gas chemistry (i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas exchange) were markedly diminished in anesthetized Sprague Dawley rats that received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-L-cysteine. The present study extends these findings by showing that unanesthetized adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine (100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of breathing, tidal volume, and minute ventilation. Our study also found that the ability of intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which was measured as a marked increase of the non-eupneic breathing index, was substantially reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine (100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and 50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine. In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on breathing, and opens the door for mechanistic studies designed to establish whether the pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1) the activation of plasma membrane ion channels and receptors, 2) selective intracellular entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in determining the potency/efficacy of fentanyl on breathing is an intriguing question.