- Browse by Subject
Browsing by Subject "Tibetan plateau"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Reconstructing Holocene Indian Summer Monsoon Variability Using High Resolution Sediments from the Southeastern Tibet(2020-12) Perello, Melanie Marie; Bird, Broxton; Gilhooly, William; Filippelli, Gabriel; Wang, Lixin; Wilson, JeffreyThe Indian summer monsoon (ISM) is the dominant hydrometeorological phenomenon that provides the majority of precipitation to southern Asia and southeastern Tibet specifically. Reliable projections of ISM rainfall are critical for water management and hinge on our understanding of the drivers of the monsoon system and how these drivers will be impacted by climate change. Because instrumental climate records are limited in space and time, natural climate archives are required to understand how the ISM varied in the past in response to changes in climatic boundary climate conditions. Lake sediments are high-resolution natural paleoclimate archive that are widely distributed across the Tibetan Plateau, making them useful for investigating long-term precipitation trends and their response to climatic boundary conditions. To investigate changes in monsoon intensity during the Holocene, three lakes were sampled along an east-west transect in southeastern Tibet: Galang Co, Nir’Pa Co, and Cuobu. Paleoclimate records from each lake were developed using isotopic (leaf wax hydrogen isotopes; δ2H), sedimentological, and geochemical proxies of precipitation and lake levels. Sediments were sampled at high temporal frequencies, with most proxies resolved at decadal scales, to capture multi-decadal to millennial-scale variability in monsoon intensity and local hydroclimate conditions. The ISM was strongest in the early Holocene as evidenced by leaf-wax n-alkane δ2H at both Cuobu and Galang Co corresponding with Cuobu’s higher lake levels and effective moisture. Monsoon intensity declined at Cuobu and Galang Co around 6 ka which corresponds to reduced riverine sediment influxes at Cuobu and deeper lake levels at Galang Co. The antiphase relationship between lake levels and monsoon intensity at Galang Co is attributed to air temperatures and effective moisture, with a warmer and drier local hydroclimate driving early Holocene low lake levels. The late Holocene ISM was more variable with wet and dry periods, as seen in the Nir’Pa Co lake level and leaf wax n-alkane δ2H record. These records demonstrate coherent drivers of synoptic and local hydroclimate that account for Holocene ISM expression across the southeastern Tibetan Plateau, indicating possible drivers of future monsoon expression under climate change.Item Stable isotopes of river water and groundwater along altitudinal gradients in the High Himalayas and the Eastern Nyainqentanghla Mountains(Elsevier, 2017-12-01) Florea, Lee; Bird, Broxton W.; Lau, Jamie K.; Wang, Lixin; Lei, Yanbin; Yao, Tandong; Thompson, Lonnie G.; Earth Science, School of ScienceStudy Region This study considers river water and groundwater in seeps and springs collected from the non-monsoon season in the valleys of the Dudh Koshi River in eastern Nepal and the Niyang River of eastern Tibet, both in the Himalaya Mountains. Study Focus Data from this study comprise water samples that provide a single season snapshot of δ18O and δD values that give additional information into the sources of moisture and the altitude lapse rates for the southern flank of the High Himalaya of Nepal and the Eastern Nyainqentanghla Mountains of the Tibetan Plateau. New Hydrological Insights The local water line for Nepal samples, δD=(7.8±0.3) · δ18O + (4.0‰±4.6‰), was moderately lower in slope than for Tibetan Plateau samples, δD=(8.7±0.1) · δ18O + (24.3‰±2.0‰); evaporation has a greater influence on the Nepal samples—consistent with warmer temperatures in Nepal versus Tibet within the same altitude range. Mean d-excess values for Tibet samples (13.1‰±2.0‰) implies that recycled continental moisture has more influence than marine moisture observed for the Nepal samples (7.4‰±4.4‰). Altitude lapse rates of δ18O and δD for Nepal samples (-2.8‰‰km−1 and −24.0‰km−1) do not significantly differ from Tibet samples (−3.1‰‰km−1 and −27.0‰km−1) and regional measurements; the lapse rates are reduced above 4500m and are not influenced by exceptionally high elevations in the Dudh Koshi River watershed.