- Browse by Subject
Browsing by Subject "Thromboelastography"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Brodifacoum contamination of synthetic cannabinoid causing unexplained coagulopathy in multiple trauma: A case report(Elsevier, 2024-04-01) Thomas, Anthony V.; Johnson, Mackenzie L.; Tincher, Anna M.; Zackariya, Saniya; Khan, Hassaan; Rizvi, Uzma; Thomas, Scott G.; Noveroske, Timothy W.; Fulkerson, Daniel H.; Moore, Ernest E.; Walsh, Mark M.; Medicine, School of MedicineAn 18-year-old female presented to the emergency department after a motor vehicle collision. Initial imaging revealed a liver laceration. Subsequent labs showed significantly elevated prothrombin time, international normalized ratio, and activated partial thromboplastin time. Thromboelastography demonstrated a flatline tracing. The patient denied use of anticoagulation but admitted to synthetic cannabinoid use. It was believed the patient had taken synthetic cannabinoid contaminated by brodifacoum. She was therefore given prothrombin complex concentrate and vitamin K with blood products. The patient underwent sequential embolization, laparotomy, thoracotomy, and repair of the vena cava with a shunt. Thirty minutes postoperatively, her coagulation tests and thromboelastography were much improved. Two and a half hours postoperatively, it was determined she had sustained non-survivable injuries. The patient experienced brain death due to prolonged hypotension as a result of hemorrhagic shock with bleeding exacerbated by brodifacoum. To our knowledge, this is the first case reported of a trauma-induced coagulopathy exacerbated by brodifacoum-contaminated synthetic cannabinoid. Her coagulopathy was clearly not due to trauma alone and contributed greatly to the difficulty in controlling hemorrhage. The synthetic cannabinoid-associated coagulopathy rendered her otherwise potentially survivable injuries fatal. Given the frequency of multiple trauma and the recent increase in the prevalence of synthetic cannabinoid, it can be expected that the incidence of trauma complicated by synthetic cannabinoid-associated coagulopathy will increase in the near future. For patients that present with prolonged prothrombin time and/or activated partial thromboplastin time, it is important to inquire about recent synthetic cannabinoid use.Item Differences in platelet aggregometers to study platelet function and coagulation dysregulation in xenotransplantation(Wiley, 2021-01) Isidan, Abdulkadir; Chen, Angela M.; Saglam, Kutay; Yilmaz, Sezai; Zhang, Wenjun; Li, Ping; Ekser, Burcin; Surgery, School of MedicineXenotransplantation (ie, cross-species transplantation) using genetically engineered pig organs could be a limitless source to solve the shortage of organs and tissues worldwide. However, despite prolonged survival in preclinical pig-to-nonhuman primate xenotransplantation trials, interspecies coagulation dysregulation remains to be overcome in order to achieve continuous long-term success. Different platelet aggregometry methods have been previously used to study the coagulation dysregulation with wild-type and genetically engineered pig cells, including the impact of possible treatment options. Among these methods, while thromboelastography and rotational thromboelastometry measure the change in viscoelasticity, optical aggregometry measures the change in opacity. Recently, impedance aggregometry has been used to measure changes in platelet aggregation in electrical conductance, providing more information to our understanding of coagulation dysregulation in xenotransplantation compared to previous methods. The present study reviews the merits and differences of the above-mentioned platelet aggregometers in xenotransplantation research.Item Exploring microplastic impact on whole blood clotting dynamics utilizing thromboelastography(Frontiers Media, 2023-07-13) Christodoulides, Alexei; Hall, Abigail; Alves, Nathan J.; Emergency Medicine, School of MedicineThis study investigates the influence of microplastics on blood clotting. It addresses the lack of comprehensive research on the effects of microplastic size and surface modification on clotting dynamics in human whole blood. Thromboelastography was used to examine aminated (aPS), carboxylated (cPS), and non-functionalized (nPS) polystyrene particles with sizes of 50, 100, and 500 nm. Results show that cPS consistently activated the clotting cascade, demonstrating increased fibrin polymerization rates, and enhanced clot strength in a size and concentration-dependent manner. nPS had minimal effects on clotting dynamics except for 50 nm particles at the lowest concentration. The clotting effects of aPS (100 nm particles) resembled those of cPS but were diminished in the 500 nm aPS group. These findings emphasize the importance of microplastic surface modification, size, concentration, and surface area on in-vitro whole blood clotting dynamics.Item Insights into the association between coagulopathy and inflammation: abnormal clot mechanics are a warning of immunologic dysregulation following major injury(AME, 2020-12) Savage, Stephanie A.; Zarzaur, Ben L.; Gaski, Greg E.; McCarroll, Tyler; Zamora, Ruben; Namas, Rami A.; Vodovotz, Yoram; Callcut, Rachael A.; Billiar, Timothy R.; McKinley, Todd O.; Orthopaedic Surgery, School of MedicineBackground: Severe injury initiates a complex physiologic response encompassing multiple systems and varies phenotypically between patients. Trauma-induced coagulopathy may be an early warning of a poorly coordinated response at the molecular level, including a deleterious immunologic response and worsening of shock states. The onset of trauma-induced coagulopathy (TIC) may be subtle however. In previous work, we identified an early warning sign of coagulopathy from the admission thromboelastogram, called the MAR ratio. We hypothesized that a low MAR ratio would be associated with specific derangements in the inflammatory response. Methods: In this prospective, observational study, 88 blunt trauma patients admitted to the intensive care unit (ICU) were identified. Concentrations of inflammatory mediators were recorded serially over the course of a week and the MAR ratio was calculated from the admission thromboelastogram. Correlation analysis was used to assess the relationship between MAR and inflammatory mediators. Dynamic network analysis was used to assess coordination of immunologic response. Results: Seventy-nine percent of patients were male and mean age was 37 years (SD 12). The mean ISS was 30.2 (SD 12) and mortality was 7.2%. CRITICAL patients (MAR ratio ≤14.2) had statistically higher shock volumes at three time points in the first day compared to NORMAL patients (MAR ratio >14.2). CRITICAL patients had significant differences in IL-6 (P=0.0065), IL-8 (P=0.0115), IL-10 (P=0.0316) and MCP-1 (P=0.0039) concentrations compared to NORMAL. Differences in degree of expression and discoordination of immune response continued in CRITICAL patients throughout the first day. Conclusions: The admission MAR ratio may be the earliest warning signal of a pathologic inflammatory response associated with hypoperfusion and TIC. A low MAR ratio is an early indication of complicated dysfunction of multiple molecular processes following trauma.Item Microplastic Effects on Thrombin-Fibrinogen Clotting Dynamics Measured via Turbidity and Thromboelastography(MDPI, 2022-12-13) Tran, Daniela Q.; Stelflug, Nathan; Hall, Abigail; Chakravarthula, Tanmaye Nallan; Alves, Nathan J.; Emergency Medicine, School of MedicineMicro/nanoplastics, whether manufactured or resulting from environmental degradation, can enter the body through ingestion, inhalation, or dermal pathways. Previous research has found that nanoplastics with diameters of ≤100 nm can translocate into the circulatory system in a dose-dependent manner and potentially impact thrombosis and hemostasis. To investigate the direct effects of microplastics on fibrin clot formation, a simplified ex vivo human thrombin/fibrinogen clot model was utilized. The 100 nm polystyrene particles (non-functionalized [nPS] and aminated [aPS]) were preincubated (0-200 µg/mL) with either thrombin or fibrinogen, and fibrin clot formation was characterized via turbidity and thromboelastography (TEG). When the particles were preincubated with fibrinogen, little effect was observed for aPS or nPS on turbidity or TEG up through 100 µg/mL. TEG results demonstrated a significant impact on clot formation rate and strength, in the case of nPS preincubated with thrombin exhibiting a significant dose-dependent inhibitory effect. In conclusion, the presence of microplastics can have inhibitory effects on fibrin clot formation that are dependent upon both particle surface charge and concentration. Negatively charged nPS exhibited the most significant impacts to clot strength, turbidity, and rate of fibrin formation when first incubated with thrombin, with its impact being greatly diminished when preincubated with fibrinogen in this simplified fibrin clot model.Item Resonant Acoustic Rheometry to Measure Coagulation Kinetics in Hemophilia A and Healthy Plasma: A Novel Viscoelastic Method(Thieme, 2023) Li, Weiping; Hobson, Eric C.; Bunch, Connor M.; Miller, Joseph B.; Nehme, Jimmy; Kwaan, Hau C.; Walsh, Mark M.; McCurdy, Michael T.; Aversa, John G.; Thomas, Anthony V.; Zackariya, Nuha; Thomas, Samuel J.; Smith, Stephanie A.; Cook, Bernard C.; Boyd, Bryan; Stegemann, Jan P.; Deng, Cheri X.; Surgery, School of MedicineCompared with conventional coagulation tests and factor-specific assays, viscoelastic hemostatic assays (VHAs) can provide a more thorough evaluation of clot formation and lysis but have several limitations including clot deformation. In this proof-of-concept study, we test a noncontact technique, termed resonant acoustic rheometry (RAR), for measuring the kinetics of human plasma coagulation. Specifically, RAR utilizes a dual-mode ultrasound technique to induce and detect surface oscillation of blood samples without direct physical contact and measures the resonant frequency of the surface oscillation over time, which is reflective of the viscoelasticity of the sample. Analysis of RAR results of normal plasma allowed defining a set of parameters for quantifying coagulation. RAR detected a flat-line tracing of resonant frequency in hemophilia A plasma that was corrected with the addition of tissue factor. Our RAR results captured the kinetics of plasma coagulation and the newly defined RAR parameters correlated with increasing tissue factor concentration in both healthy and hemophilia A plasma. These findings demonstrate the feasibility of RAR as a novel approach for VHA, providing the foundation for future studies to compare RAR parameters to conventional coagulation tests, factor-specific assays, and VHA parameters.Item SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock(Frontiers Media, 2023-02-27) Bunch, Connor M.; Chang, Eric; Moore, Ernest E.; Moore, Hunter B.; Kwaan, Hau C.; Miller, Joseph B.; Al-Fadhl, Mahmoud D.; Thomas, Anthony V.; Zackariya, Nuha; Patel, Shivani S.; Zackariya, Sufyan; Haidar, Saadeddine; Patel, Bhavesh; McCurdy, Michael T.; Thomas, Scott G.; Zimmer, Donald; Fulkerson, Daniel; Kim, Paul Y.; Walsh, Matthew R.; Hake, Daniel; Kedar, Archana; Aboukhaled, Michael; Walsh, Mark M.; Graduate Medical Education, School of MedicineIrrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function—including fibrinolysis—to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.Item Use of Thromboelastography in the Evaluation and Management of Patients With Traumatic Brain Injury: A Systematic Review and Meta-Analysis(Wolters Kluwer, 2021-09-14) Cannon, Jeremy W.; Dias, João D.; Kumar, Monisha A.; Walsh, Mark; Thomas, Scott G.; Cotton, Bryan A.; Schuster, James M.; Evans, Susan L.; Schreiber, Martin A.; Adam, Elisabeth H.; Zacharowsk, Kai; Hartmann, Jan; Schöchl, Herbert; Kaplan, Lewis J.; Medicine, School of MedicineTraumatic brain injury is associated with coagulopathy that increases mortality risk. Viscoelastic hemostatic assays such as thromboelastography (Haemonetics SA, Signy, Switzerland) provide rapid coagulopathy assessment and may be particularly useful for goal-directed treatment of traumatic brain injury patients. We conducted a systematic review to assess thromboelastography in the evaluation and management of coagulopathy in traumatic brain injury patients. Data sources: MEDLINE, PubMed Central, Embase, and CENTRAL. Study selection: Clinical studies of adult patients with traumatic brain injury (isolated or polytrauma) who were assessed by either standard thromboelastography or thromboelastography with platelet mapping plus either conventional coagulation assays or platelet function assays from January 1999 to June 2021. Data extraction: Demographics, injury mechanism and severity, diagnostic, laboratory data, therapies, and outcome data were extracted for analysis and comparison. Data synthesis: Database search revealed 1,169 sources; eight additional articles were identified by the authors. After review, 31 publications were used for qualitative analysis, and of these, 16 were used for quantitative analysis. Qualitative and quantitative analysis found unique patterns of thromboelastography and thromboelastography with platelet mapping parameters in traumatic brain injury patients. Patterns were distinct compared with healthy controls, nontraumatic brain injury trauma patients, and traumatic brain injury subpopulations including those with severe traumatic brain injury or penetrating traumatic brain injury. Abnormal thromboelastography K-time and adenosine diphosphate % inhibition on thromboelastography with platelet mapping are associated with decreased survival after traumatic brain injury. Subgroup meta-analysis of severe traumatic brain injury patients from two randomized controlled trials demonstrated improved survival when using a viscoelastic hemostatic assay-guided resuscitation strategy (odds ratio, 0.39; 95% CI, 0.17-0.91; p = 0.030). Conclusions: Thromboelastography and thromboelastography with platelet mapping characterize coagulopathy patterns in traumatic brain injury patients. Abnormal thromboelastography profiles are associated with poor outcomes. Conversely, treatment protocols designed to normalize abnormal parameters may be associated with improved traumatic brain injury patient outcomes. Current quality of evidence in this population is low; so future efforts should evaluate viscoelastic hemostatic assay-guided hemostatic resuscitation in larger numbers of traumatic brain injury patients with specific focus on those with traumatic brain injury-associated coagulopathy.Item Viscoelastic Hemostatic Assays for Postpartum Hemorrhage(MDPI, 2021-08-31) Liew-Spilger, Alyson E.; Sorg, Nikki R.; Brenner, Toby J.; Langford, Jack H.; Berquist, Margaret; Mark, Natalie M.; Moore, Spencer H.; Mark, Julie; Baumgartner, Sara; Abernathy, Mary P.; Obstetrics and Gynecology, School of MedicineThis article discusses the importance and effectiveness of viscoelastic hemostatic assays (VHAs) in assessing hemostatic competence and guiding blood component therapy (BCT) in patients with postpartum hemorrhage (PPH). In recent years, VHAs such as thromboelastography and rotational thromboelastometry have increasingly been used to guide BCT, hemostatic adjunctive therapy and prohemostatic agents in PPH. The three pillars of identifying hemostatic competence include clinical observation, common coagulation tests, and VHAs. VHAs are advantageous because they assess the cumulative contribution of all components of the blood throughout the entire formation of a clot, have fast turnaround times, and are point-of-care tests that can be followed serially. Despite these advantages, VHAs are underused due to poor understanding of correct technique and result interpretation, a paucity of widespread standardization, and a lack of large clinical trials. These VHAs can also be used in cases of uterine atony, preeclampsia, acute fatty liver of pregnancy, amniotic fluid embolism, placental abruption, genital tract trauma, surgical trauma, and inherited and prepartum acquired coagulopathies. There exists an immediate need for a point-of-care test that can equip obstetricians with rapid results on developing coagulopathic states. The use of VHAs in predicting and treating PPH, although in an incipient state, can fulfill this need.Item Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices(MDPI, 2022-02-07) Volod, Oksana; Bunch, Connor M.; Zackariya, Nuha; Moore, Ernest E.; Moore, Hunter B.; Kwaan, Hau C.; Neal, Matthew D.; Al-Fadhl, Mahmoud D.; Patel, Shivani S.; Wiarda, Grant; Al-Fadhl, Hamid D.; McCoy, Max L.; Thomas, Anthony V.; Thomas, Scott G.; Gillespie, Laura; Khan, Rashid Z.; Zamlut, Mahmud; Kamphues, Peter; Fries, Dietmar; Walsh, Mark M.; Medicine, School of MedicineViscoelastic hemostatic assay (VHAs) are whole blood point-of-care tests that have become an essential method for assaying hemostatic competence in liver transplantation, cardiac surgery, and most recently, trauma surgery involving hemorrhagic shock. It has taken more than three-quarters of a century of research and clinical application for this technology to become mainstream in these three clinical areas. Within the last decade, the cup and pin legacy devices, such as thromboelastography (TEG® 5000) and rotational thromboelastometry (ROTEM® delta), have been supplanted not only by cartridge systems (TEG® 6S and ROTEM® sigma), but also by more portable point-of-care bedside testing iterations of these legacy devices (e.g., Sonoclot®, Quantra®, and ClotPro®). Here, the legacy and new generation VHAs are compared on the basis of their unique hemostatic parameters that define contributions of coagulation factors, fibrinogen/fibrin, platelets, and clot lysis as related to the lifespan of a clot. In conclusion, we offer a brief discussion on the meteoric adoption of VHAs across the medical and surgical specialties to address COVID-19-associated coagulopathy.