- Browse by Subject
Browsing by Subject "Thrombelastography"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item C-reactive protein and fibrin clot strength measured by thrombelastography after coronary stenting(Wolters Kluwer, 2013) Kreutz, Rolf P.; Owens, Janelle; Breall, Jeffrey A.; Lu, Deshun; von der Lohe, Elisabeth; Bolad, Islam; Sinha, Anjan; Flockhart, David A.; Medicine, School of MedicineInflammation is implicated in the progression of coronary artery disease and the molecular processes of inflammation and thrombosis are closely intertwined. Elevated levels of C-reactive protein (CRP) have been associated with an elevated risk of adverse ischaemic events after coronary stenting and hypercoagulability. Heightened whole blood clot strength measured by thrombelastography (TEG) has been associated with adverse ischaemic events after stenting. We intended to examine the relationship of CRP to plasma fibrin clot strength in patients after coronary stenting. Plasma fibrin clot strength was measured by TEG in 54 patients 16-24 h after undergoing elective percutaneous coronary intervention (PCI). Coagulation was induced in citrated plasma by addition of kaolin and CaCl2. Plasma levels of CRP and fibrinogen were measured by enzyme-linked immunoassay. Increasing quartiles of CRP were associated with increasing levels of maximal plasma fibrin clot strength measured by TEG (P < 0.001) and increasing BMI (P = 0.04). Patients in the highest quartile of CRP had significantly higher maximal fibrin clot strength (G) than the patients in the lowest quartile (G: 3438 ± 623 vs. 2184 ± 576 dyn/cm, P < 0.0001). Fibrinogen concentration was not significantly different across quartiles of CRP (P = 0.97). Patients with established coronary artery disease undergoing coronary stenting who have elevated CRP after PCI exhibit heightened maximal plasma fibrin clot strength as compared with those with low CRP. Thrombotic risk associated with elevated CRP may be linked to procoagulant changes and high tensile fibrin clot strength independent of fibrinogen concentration.Item Factor XIII Val34Leu polymorphism and recurrent myocardial infarction in patients with coronary artery disease(Springer, 2014-10) Kreutz, Rolf P.; Bitar, Abbas; Owens, Janelle; Desta, Zeruesenay; Breall, Jeffrey A.; von der Lohe, Elisabeth; Sinha, Anjan; Vatta, Matteo; Nystrom, Perry; Flockhart, David A.; Department of Medicine, IU School of MedicineFactor XIII (FXIII) is necessary for cross linking of fibrin strands and generation of stable fibrin clot. FXIII Val34Leu is a common genetic single nucleotide polymorphism that has been associated with accelerated fibrin stabilization and reduced rate of fibrinolysis. The contribution of Val34Leu to long term risk of recurrent myocardial infarction (MI) in patients with coronary stenting has not been conclusively established. The objective of the study was to examine the effects of Val34Leu on fibrin generation, platelet aggregation, and long term clinical outcomes in patients with coronary artery disease treated with dual antiplatelet therapy. Patients with angiographically documented coronary artery disease who were treated with aspirin and clopidogrel were enrolled (n = 211). Light transmittance aggregometry and plasma fibrin clot formation using thrombelastography (TEG) were determined. Genotyping of Val34Leu was performed using Taqman assay. Clinical events during follow up were recorded. Homozygous carriers of 34Leu variant had significantly shorter fibrin clot formation time as compared to wild type individuals (TEG K: 1.27 ± 0.3 vs. 1.68 ± 1.1 min, p = 0.011). The Val34Leu variant was associated with gene dose dependent increased risk of MI (log rank, p = 0.002) or occurrence of composite of MI and CV death (log rank, p = 0.005) with highest event rates observed in homozygous carriers of 34Leu. In summary, FXIII Val34Leu polymorphism was associated with increased rate of fibrin stabilization in homozygous carriers of the variant and may increase risk of recurrent MI and death in patients with angiographically established coronary artery disease treated with dual antiplatelet therapy.Item Inhaled nitric oxide to control platelet hyper-reactivity in patients with acute submassive pulmonary embolism(Elsevier, 2020-03-01) Kline, Jeffrey A.; Puskarich, Michael A.; Pike, Jonathan; Zagorski, John; Alves, Nathan J.; Emergency Medicine, School of MedicineBackground: We test if inhaled nitric oxide (NO) attenuates platelet functional and metabolic hyper-reactivity in subjects with submassive pulmonary embolism (PE). Methods: Participants with PE were randomized to either 50 ppm NO + O2 or O2 only for 24 h with blood sampling at enrollment and after treatment; results were compared with healthy controls. Platelet metabolic activity was assessed by oxygen consumption (basal and uncoupled) and reactivity was assessed with agonist-stimulated thromboelastography (TEG) and fluorometric measurement of agonist-stimulated cytosolic [Ca++] without and with pharmacological soluble guanylate (sGC) modulation. Results: Participants (N = 38 per group) were well-matched at enrollment for PE severity, comorbidities as well as TEG parameters and platelet O2 consumption. NO treatment doubled the mean plasma [NO3-] (P < 0.001) indicating successful delivery, but placebo treatment produced no change. After 24 h, neither TEG nor O2 consumption parameters differed significantly between treatment groups. Platelet cytosolic [Ca++] was elevated with PE versus controls, and was decreased by treatment with cinaciguat (an sGC activator), but not riociguat (an sGC stimulator). Stimulated platelet lysate sGC activity was increased with PE compared with controls. Conclusions: In patients with acute submassive PE, despite evidence of adequate drug delivery, inhaled NO had no major effect on platelet O2 consumption or agonist-stimulated parameters on TEG. Pharmacological activation, but not stimulation, of sGC effectively decreased platelet cytosolic [Ca++], and platelet sGC activity was increased with PE, confirming the viability of sGC as a therapeutic target.Item Plasma and Whole Blood Clot Strength Measured by Thrombelastography in Patients Treated with Clopidogrel during Acute Coronary Syndromes(Elsevier, 2013) Lu, Deshun; Owens, Janelle; Kreutz, Rolf P.; Medicine, School of MedicineIntroduction: Treatment with clopidogrel, a selective platelet P2Y12 receptor antagonist, reduces risk of recurrent ischemic events in patients with acute coronary syndrome (ACS), by limiting platelet aggregation and activation. Stable whole blood clot formation requires activation of platelets, generation of fibrin and final fibrin crosslinks. In this study we intended to compare plasma and whole blood thrombelastography (TEG) measurements in patients during ACS. Materials and methods: Whole blood and plasma samples from 32 patients with non-ST segment elevation myocardial infarction (NSTEMI) were collected after administration of clopidogrel. Whole blood and plasma fibrin clot strength (MA) were determined by TEG. Platelet aggregation was determined by light transmittance aggregometry (LTA) using adenosine 5'-diphosphate (ADP), thrombin receptor activation peptide (TRAP), or collagen as agonists. Fibrinogen and C-reactive protein (CRP) concentrations were measured by ELISA. Results: Heightened plasma fibrin clot strength was associated with increased platelet reactivity stimulated by ADP (ρ=0.536; p=0.002), TRAP (ρ=0.481; p=0.007), and collagen (ρ=0.538; p=0.01). In contrast to plasma fibrin MA, whole blood MA did not correlate with platelet aggregation. Platelet count was the primary contributor to the difference in thrombin induced whole blood MA and plasma fibrin MA. Increasing levels of CRP were associated with increased plasma fibrin clot strength and platelet reactivity. Conclusions: Our data suggest that inflammation is associated with increased plasma fibrin clot strength and lower platelet inhibition by clopidogrel during ACS. Platelet count is a main contributor to additional contractile force of whole blood TEG as compared to plasma TEG during treatment with clopidogrel.Item Prediction of Ischemic Events after Percutaneous Coronary Intervention: Thrombelastography Profiles and Factor XIIIa Activity(Thieme Medical Publishers, 2018-04) Kreutz, Rolf P.; Schmeisser, Glen; Schaffter, Andrea; Kanuri, Sri; Owens, Janelle; Maatman, Benjamin; Sinha, Anjan; Lohe, Elisabeth von der; Breall, Jeffrey A.; Medicine, School of MedicineBackground: High plasma fibrin clot strength (MA) measured by thrombelastography (TEG) is associated with increased risk of cardiac events after percutaneous coronary interventions (PCIs). Factor XIIIa (FXIIIa) cross-links soluble fibrin, shortens clot formation time (TEG-K), and increases final clot strength (MA). Methods: We analyzed platelet-poor plasma from patients with previous PCI. Kaolin-activated TEG (R, K, MA) in citrate platelet-poor plasma and FXIIIa were measured (n = 257). Combined primary endpoint was defined as recurrent myocardial infarction (MI) or cardiovascular death (CVD). Relationship of FXIIIa and TEG measurements on cardiac risk was explored. Results: FXIIIa correlated with TEG-MA (p = 0.002) and inversely with TEG-K (p < 0.001). High MA (≥35.35 mm; p = 0.001), low K (<1.15 min; p = 0.038), and elevated FXIIIa (≥83.51%; p = 0.011) were associated with increased risk of CVD or MI. Inclusion of FXIIIa activity and low TEG-K in risk scores did not improve risk prediction as compared with high TEG-MA alone. Conclusion: FXIIIa is associated with higher plasma TEG-MA and low TEG-K. High FXIIIa activity is associated with a modest increase in cardiovascular risk after PCI, but is less sensitive and specific than TEG-MA. Addition of FXIIIa does not provide additional risk stratification beyond risk associated with high fibrin clot strength phenotype measured by TEG.Item Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats(Wolters Kluwer, 2014) Castellino, Francis J.; Chapman, Michael P.; Donahue, Deborah L.; Thomas, Scott; Moore, Ernest E.; Wohlauer, Max V.; Fritz, Braxton; Yount, Robert; Ploplis, Victoria; Davis, Patrick; Evans, Edward; Walsh, Mark; Biochemistry and Molecular Biology, School of MedicineBackground: Coagulopathy in traumatic brain injury (CTBI) is a well-established phenomenon, but its mechanism is poorly understood. Various studies implicate protein C activation related to the global insult of hemorrhagic shock or brain tissue factor release with resultant platelet dysfunction and depletion of coagulation factors. We hypothesized that the platelet dysfunction of CTBI is a distinct phenomenon from the coagulopathy following hemorrhagic shock. Methods: We used thrombelastography with platelet mapping as a measure of platelet function, assessing the degree of inhibition of the adenosine diphosphate (ADP) and arachidonic acid (AA) receptor pathways. First, we studied the early effect of TBI on platelet inhibition by performing thrombelastography with platelet mapping on rats. We then conducted an analysis of admission blood samples from trauma patients with isolated head injury (n = 70). Patients in shock or on clopidogrel or aspirin were excluded. Results: In rats, ADP receptor inhibition at 15 minutes after injury was 77.6% ± 6.7% versus 39.0% ± 5.3% for controls (p < 0.0001). Humans with severe TBI (Glasgow Coma Scale [GCS] score ≤ 8) showed an increase in ADP receptor inhibition at 93.1% (interquartile range [IQR], 44.8-98.3%; n = 29) compared with 56.5% (IQR, 35-79.1%; n = 41) in milder TBI and 15.5% (IQR, 13.2-29.1%) in controls (p = 0.0014 and p < 0.0001, respectively). No patient had significant hypotension or acidosis. Parallel trends were noted in AA receptor inhibition. Conclusion: Platelet ADP and AA receptor inhibition is a prominent early feature of CTBI in humans and rats and is linked to the severity of brain injury in patients with isolated head trauma. This phenomenon is observed in the absence of hemorrhagic shock or multisystem injury. Thus, TBI alone is shown to be sufficient to induce a profound platelet dysfunction.