ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Thiol-ene chemistry"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions
    (Elsevier, 2021) Chang, Chun-Yi; Johnson, Hunter C.; Babb, Olivia; Fishel, Melissa L.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and Technology
    Hydrogels with dynamically tunable crosslinking are invaluable for directing stem cell fate and mimicking a stiffening matrix during fibrosis or tumor development. The increases in matrix stiffness during tissue development are often accompanied by the accumulation of extracellular matrices (e.g., collagen, hyaluronic acid (HA)), a phenomenon that has received little attention in the development of dynamic hydrogels. In this contribution, we present a gelatin-based cell-laden hydrogel system capable of being dynamically stiffened while accumulating HA, a key glycosaminoglycans (GAG) increasingly deposited by stromal cells during tumor progression. Central to this strategy is the synthesis of a dually-modified gelatin macromer – gelatin-norbornene-carbohydrazide (GelNB-CH), which is susceptible to both thiol-norbornene photopolymerization and hydrazone click chemistry. We demonstrate that the crosslinking density of cell-laden thiol-norbornene hydrogels can be dynamically tuned via simple incubation with aldehyde-bearing macromers (e.g., oxidized dextran (oDex) or oHA). The GelNB-CH hydrogel system is highly cytocompatible, as demonstrated by in situ encapsulation of pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF). The unique dynamic stiffening scheme provides a platform to study tandem accumulation of HA and elevation in matrix stiffness in the pancreatic tumor microenvironment.
  • Loading...
    Thumbnail Image
    Item
    Chemically defined and dynamic click hydrogels support hair cell differentiation in human inner ear organoids
    (Elsevier, 2025) Arkenberg, Matthew R.; Jafarkhani, Mahboubeh; Lin, Chien-Chi; Hashino, Eri; Otolaryngology -- Head and Neck Surgery, School of Medicine
    The mechanical properties in the inner ear microenvironment play a key role in its patterning during embryonic development. To recapitulate inner ear development in vitro, three-dimensional tissue engineering strategies including the application of representative tissue models and scaffolds are of increasing interest. Human inner ear organoids are a promising model to recapitulate developmental processes; however, the current protocol requires Matrigel that contains ill-defined extracellular matrix components. Here, we implement an alternative, chemically defined, dynamic hydrogel to support the differentiation of human inner ear organoids. Specifically, thiol-norbornene and hydrazide-aldehyde click chemistries are used to fabricate inner ear organoid-laden, gelatin-based scaffolds. We identify optimal formulations to support hair cell development with comparable efficiency and fidelity to Matrigel-cultured organoids. These results suggest that the chemically defined hydrogel may serve as a viable alternative to Matrigel for inner ear tissue engineering.
  • Loading...
    Thumbnail Image
    Item
    The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D
    (Elsevier, 2013) Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi; Biomedical Engineering, Purdue School of Engineering and Technology
    A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for studying and manipulating pancreatic epithelial cell growth and morphogenesis in 3D.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University