- Browse by Subject
Browsing by Subject "Th2"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Association between alopecia areata and atopic dermatitis: A nested case-control study of the All of Us database(Elsevier, 2023) Diaz, Michael J.; Haq, Zaim; Abdi, Parsa; Tran, Jasmine T.; Guttman-Yassky, Emma; Ungar, Benjamin; Dermatology, School of MedicineItem THE DEVELOPMENT AND COMMITMENT OF T HELPER SUBSETS(2011-03-09) Stritesky, Gretta L.; Kaplan, Mark H.; Blum, Janice Sherry, 1957-; Dent, Alexander L.; Harrington, Maureen A.T helper cells play a crucial role in providing protection against a wide variety of pathogens. The differentiation and effector function of T helper cell subsets is dependent on cytokine activation of Signal Transducer and Activator of Transcription (STAT) family members. The development of Th17 cells, which are important for immunity to fungi and extracellular bacteria, relies on STAT3. We show that IL-23 in combination with IL-1β promotes maintenance of the Th17 phenotype following multiple rounds of stimulation. However, IL-23 does not promote commitment of Th17 cells, and when Th17 cells are cultured with IL-12 or IL-4 they switch to a Th1 and Th2 phenotype, respectively. The maintenance of the Th17 phenotype by IL-23 also requires STAT4. STAT4-deficient memory cells cultured with IL-23 have reduced IL-17 production following stimulation with either anti-CD3 or IL-18+IL-23 stimulation compared to wild type memory cells. Furthermore, STAT4-deficient mice have impaired in vivo Th17 development following immunization with ovalbumin. This challenges a one-STAT/one-subset paradigm and suggests that multiple STAT proteins can contribute to a single phenotype. To test this further we examined whether STAT3 is required for the development of Th2 cells, a subset known to depend upon the IL-4-induced activation of STAT6 for immunity to parasites and promoting allergic inflammation. We demonstrate that in the absence of STAT3, the expression of Th2-associated cytokines and transcription factors is dramatically reduced. STAT3 is also required for in vivo development of Th2 cells. Moreover, allergic inflammation is diminished in mice that have T cells lacking expression of STAT3. STAT3 does not affect STAT6 activation, but does impact how STAT6 functions in binding target genes. Thus, multiple STAT proteins can cooperate in promoting the development of specific T helper subsets.Item The role of PU.1 and IRF4 interaction in the biology and function of T helper 2 cells(2009-05-19T18:01:29Z) Ahyi, Ayele-Nati; Kaplan, Mark H.; Blum, Janice S.; Klemsz, Michael J.; Yoder, Mervin C.Adaptive and innate immune responses play a critical role in the protection against extracellular or intracellular pathogens. The function of these two types of immune responses is coordinated by CD4+ T-helper (Th) cells. Depending on the cytokine environment, Th progenitor (Thp) cells differentiate into three functionally different effector subsets. T-helper-1 (Th1) cells which mediate cell-mediated immunity, T-helper-2 (Th2) which orchestrates humoral immunity and T-helper-17 (Th17) cells key players in autoimmunity response. Cytokine induced transcription factors that are differentially expressed in Th cells are required for the development and commitment to a specific Th lineage. The population of Th2 cells can be subdivided in subpopulations depending on the level of a cytokine and the subsets of cytokines they produce. Very limited information is available about the regulation of cytokine production in this array of Th2 cells. We have recently identified the ETS family transcription factor PU.1 as regulating heterogeneity in Th2 populations. To define additional factors that might contribute to Th2 heterogeneity, we examined the PU.1 interacting protein IFN-regulatory factor (IRF)-4, a transcription factor expressed in lymphocytes and macrophages. When Th2 cells are separated based on levels of IL-10 secretion, IRF4 expression segregates into the subset of Th2 cells expressing high levels of IL-10. To investigate the role of IRF4 in cytokine heterogeneity, Th2 cells were infected with retrovirus expressing IRF4. The cells overexpressing IRF4 secreted significantly higher levels of IL-10 and IL-4 compared to cells infected with a control vector at the same time the level of IL-9 decreases. To understand the mechanism by which IRF4 regulates IL-10 expression in various Th2 cell subpopulations we used co-immunoprecipitation assays to determine transcription factors that interact with IRF4. Our data shows that PU.1, IRF4 and NFATc2 form a complex in Th2 nuclear extract. We also demonstrated by ChIP assay that IRF4 directly binds the Il10 and Il4 loci in a time dependent manner. The role of these protein-protein and protein-DNA complexes and their contribution towards Th2 heterogeneity will be further defined. Understanding the regulation of the anti-inflammatory cytokine IL-10 in Th2 cells may give us a tool to control inflammation.Item Stimulated peripheral blood mononuclear cells from chlamydia-infected women release predominantly Th1-polarizing cytokines(Elsevier, 2019-01) Jordan, Stephen J.; Bakshi, Rakesh K.; Brown, LaDraka’ T.; Chi, Xiaofei; Geisler, William M.; Medicine, School of MedicineChlamydia trachomatis infection (chlamydia) is the most prevalent sexually transmitted bacterial infection and causes significant reproductive morbidity in women. Little is known about how immunity to chlamydia develops in women, though animal models of chlamydia indicate that T-helper type 1 (Th1) responses are important for chlamydia clearance and protective immunity, whereas T-helper type 2 (Th2) responses are associated with persisting infection. In chlamydia-infected women, whether the predominant immune response is Th1- or Th2-polarizing remains controversial. To determine the cytokine profiles elicited by peripheral blood mononuclear cells (PBMCs) from chlamydia-infected women, we stimulated PBMCs with C. trachomatis elementary bodies and recombinant C. trachomatis Pgp3 and measured supernatant levels of select cytokines spanning Th1- and Th2-polarizing responses. We found that stimulated PBMCs from chlamydia-infected women secreted cytokines that indicate strong Th1-polarizing responses, especially interferon-gamma, whereas Th2-polarizing cytokines were expressed at significantly lower levels. In chlamydia-infected women, the predominant cytokine responses elicited on stimulation of PBMCs with C. trachomatis antigens were Th1-polarizing, with interferon-gamma as the predominant cytokine.Item Transcription factors and cis-acting elements in T helper cell cytokine expression(2017-12-15) Koh, Byunghee; Kaplan, Mark H.; Zhou, Baohua; Blum, Janice S.; Harrington, Maureen A.The immune system provides resistance to the myriad of pathogens in the environment, but can also respond inappropriately causing allergic inflammation and autoimmune disease. CD4+ T cells, which play a crucial role in adaptive immune system, can be divided into several subsets based on their effector functions. T helper 9 (Th9) cells, derived by the IL-4/STAT6 and TGF-β signaling pathways, produce IL-9 as a hallmark cytokine, as well as IL-10. Through IL-9 production, Th9 cells protect against parasite infection but are also involved in allergic inflammation and autoimmune diseases. Transcription factors that promote Th9 development include STATs, PU.1, BATF, and IRF4. In this study, we identify ETV5 as a factor that promotes IL-9 and IL-10 production by binding to cis-acting regulatory elements in the respective genes. At the Il9 gene, ETV5 cooperates with PU.1 in regulating gene expression. At the Il10 gene, ETV5 facilitates binding of other transcription factors to the locus. These studies and others suggested that there may be additional cis-acting regulatory elements in the Il9 gene. We demonstrate that a conserved noncoding sequence (CNS) located 25 kb upstream of the Il9 transcription start site, termed Il9 CNS-25, is critical for regulating Il9 expression in Th cell subsets. Th9 cells derived from Il9 CNS-25 mutant (Il9 ΔCNS-25) mice produce significantly less IL-9. Il9 CNS-25 promoted chromatin modifications at the promoter and accessibility of the locus. Il9 ΔCNS-25 mice showed attenuated airway inflammation compared to control mice. The Il9 CNS-25 region in mice is conserved with an IL9 CNS-18 region in the human genome. We deleted CNS-18 in primary human Th9 cells and observed diminished IL-9 production. Thus, we have identified transcription factors that regulate multiple cytokines in Th cell lineages and have demonstrated that the Il9 CNS-25/IL9 CNS-18 elements are respectively critical for Il9/IL9 gene expression.