ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Temperature sensors"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Context-Aware Collaborative Intelligence With Spatio-Temporal In-Sensor-Analytics for Efficient Communication in a Large-Area IoT Testbed
    (IEEE, 2021) Chatterjee, Baibhab; Seo, Dong-Hyun; Chakraborty, Shramana; Avlani, Shitij; Jiang, Xiaofan; Zhang, Heng; Abdallah, Mustafa; Raghunathan, Nithin; Mousoulis, Charilaos; Shakouri, Ali; Bagchi, Saurabh; Peroulis, Dimitrios; Sen, Shreyas; Electrical and Computer Engineering, Purdue School of Engineering and Technology
    Decades of continuous scaling has reduced the energy of unit computing to virtually zero, while energy-efficient communication has remained the primary bottleneck in achieving fully energy-autonomous Internet-of-Things (IoT) nodes. This article presents and analyzes the tradeoffs between the energies required for communication and computation in a wireless sensor network, deployed in a mesh architecture over a 2400-acre university campus, and is targeted toward multisensor measurement of temperature, humidity and water nitrate concentration for smart agriculture. Several scenarios involving in-sensor analytics (ISA), collaborative intelligence (CI), and context-aware switching (CAS) of the cluster head during CI has been considered. A real-time co-optimization algorithm has been developed for minimizing the energy consumption in the network, hence maximizing the overall battery lifetime. Measurement results show that the proposed ISA consumes ≈ 467× lower energy as compared to traditional Bluetooth low energy (BLE) communication, and ≈ 69500× lower energy as compared with long-range (LoRa) communication. When the ISA is implemented in conjunction with LoRa, the lifetime of the node increases from a mere 4.3 h to 66.6 days with a 230-mAh coin cell battery, while preserving >99% of the total information. The CI and CAS algorithms help in extending the worst case node lifetime by an additional 50%, thereby exhibiting an overall network lifetime of ≈ 104 days, which is >90% of the theoretical limits as posed by the leakage current present in the system, while effectively transferring information sampled every second. A Web-based monitoring system was developed to continuously archive the measured data, and for reporting real-time anomalies.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University