- Browse by Subject
Browsing by Subject "Temozolomide"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist(American Association of Neurological Surgeons, 2017-02) Wang, Haiyan; Cai, Shanbao; Bailey, Barbara J.; Saadatzadeh, M. Reza; Ding, Jixin; Tonsing-Carter, Eva; Georgiadis, Taxiarchis M.; Gunter, T. Zachary; Long, Eric C.; Minto, Robert E.; Gordon, Kevin R.; Sen, Stephanie E.; Cai, Wenjing; Eitel, Jacob A.; Waning, David L.; Bringman, Lauren R.; Wells, Clark D.; Murray, Mary E.; Sarkaria, Jann N.; Gelbert, Lawrence M.; Jones, David R.; Cohen-Gadol, Aaron A.; Mayo, Lindsey D.; Shannon, Harlan E.; Pollok, Karen E.; Pediatrics, School of MedicineOBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.Item EXTH-43. Targeting the DNA Damage Response Through Combination MDM2 and AKT Inhibitor Therapy Improves Temozolomide Effectiveness in Chemo-Resistant Glioblastoma(Oxford University Press, 2023-11-10) Koenig, Jenna; Bailey, Barbara; Alfonso, Anthony; Saadatzadeh, M. Reza; Bijangi-Vishehsaraei, Khadijeh; Pandya, Pankita; Damayanti, Nur; Dobrota, Erika; Young, Courtney; Shannon, Harlan; Pollok, Karen; Graduate Medical Education, School of MedicineTemozolomide remains the lone pharmacotherapeutic option for glioblastoma (GBM), yet the development of resistance to temozolomide has been a major challenge contributing to the persistent median < 2-year survival for patients after diagnosis. Tumor heterogeneity and induction of treatment response networks, such as the DNA damage response (DDR), are major contributors to temozolomide resistance in GBM. Targeting DDR treatment response networks, such as the MDM2/p53/p73 and PI3K/AKT/mTOR networks, with small-molecule inhibitors (SMIs) presents an opportunity to disrupt resistance mechanisms and enhance temozolomide efficacy. We utilized a triple drug combination of clinically relevant concentrations of the blood-brain-barrier penetrant SMIs of AKT (ipatasertib; GDC-0068) and MDM2 (idasanutlin; RG7388) with temozolomide to evaluate this targeted strategy using the recurrent, temozolomide-resistant, p53wt GBM10 xenoline. Proliferation studies demonstrated dose-related additive to synergistic inhibition of proliferation at clinically relevant concentrations of ipatasertib and idasanutlin. Further, IncuCyte live-cell imaging demonstrated dose-and time-related growth inhibition of these GBM cells and apoptosis marked by increased cleaved caspase 3 expression following the temozolomide+idasanutlin+ipatasertib triple combination treatment. Cells treated with temozolomide+idasanutlin+ipatasertib also displayed senescence phenotypes, with increased cell cycle arrest and elevated expression of SPiDER β-Gal expression and cell-cycle inhibitors such as p53 and p21. Experiments are in progress to determine the extent to which the effects of temozolomide+idasanutlin+ipatasertib combination therapy are dependent on p53 using siRNA knockdown of p53. In the present study, targeting the temzolomide-induced DNA damage response with idasanutlin+ipatasertib increased the effectiveness of temozolomide. These results indicate that this triple combination may be a promising approach to improving patient outcomes in temozolomide-resistant GBM.