- Browse by Subject
Browsing by Subject "Telomere"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Aging- and Tumor-Mediated Increase in CD8+CD28- T Cells Might Impose a Strong Barrier to Success of Immunotherapy in Glioblastoma(American Association of Immunologists, 2021-06-08) Huff, Wei X.; Bam, Marpe; Shireman, Jack M.; Kwon, Jae Hyun; Song, Leo; Newman, Sharlé; Cohen-Gadol, Aaron A.; Shapiro, Scott; Jones, Tamara; Fulton, Kelsey; Liu, Sheng; Tanaka, Hiromi; Liu, Yunlong; Wan, Jun; Dey, Mahua; Neurological Surgery, School of MedicineClinical use of various forms of immunotherapeutic drugs in glioblastoma (GBM), has highlighted severe T-cell dysfunction such as exhaustion in GBM patients. However, reversing T-cell exhaustion using immune checkpoint inhibitors in GBM clinical trials has not shown significant overall survival benefit. Phenotypically, CD8+ T cells with downregulated CD28 co-receptors, low CD27 expression, increased CD57 expression, and telomere shortening, are classified as senescent T cells. These senescent T cells are normally seen as part of aging and also in many forms of solid cancers. Absence of CD28 on T-cells leads to several functional irregularities including reduced TCR diversity, incomplete activation of T cells, and defects in antigen induced proliferation. In the context of GBM, presence and/or function of these CD8+CD28− T-cells is unknown. In this clinical correlative study, we investigated the effect of aging as well as tumor microenvironment on CD8+ T-cell phenotype as an indicator of its function in GBM patients. We systematically analyzed and describe a large population of CD8+CD28− T-cells in both the blood and tumor infiltrating lymphocytes of GBM patients. We found that phenotypically these CD8+CD28− T-cells represent a distinct population compared to exhausted T-cells. Comparative transcriptomic and pathway analysis of CD8+CD28− T cell populations in GBM patients revealed that tumor microenvironment might be influencing several immune related pathways and thus further exaggerating the age associated immune dysfunction in this patient population.Item The impact of telomeres and telomerase in cellular biology and medicine: it’s not the end of the story(Wiley, 2011-01) Herbert, Brittney-Shea; Department of Medical & Molecular Genetics, IU School of MedicineItem Onset of Telomere Dysfunction and Fusions in Human Ovarian Carcinoma(MDPI, 2019-05-04) Huda, Nazmul; Xu, Yan; Bates, Alison M.; Rankin, Deborah A.; Kannan, Nagarajan; Gilley, David; Pathology and Laboratory Medicine, School of MedicineTelomere dysfunction has been strongly implicated in the initiation of genomic instability and is suspected to be an early event in the carcinogenesis of human solid tumors. Recent findings have established the presence of telomere fusions in human breast and prostate malignancies; however, the onset of this genomic instability mechanism during progression of other solid cancers is not well understood. Herein, we explored telomere dynamics in patient-derived epithelial ovarian cancers (OC), a malignancy characterized by multiple distinct subtypes, extensive molecular heterogeneity, and widespread genomic instability. We discovered a high frequency of telomere fusions in ovarian tumor tissues; however, limited telomere fusions were detected in normal adjacent tissues or benign ovarian samples. In addition, we found relatively high levels of both telomerase activity and hTERT expression, along with anaphase bridges in tumor tissues, which were notably absent in adjacent normal ovarian tissues and benign lesions. These results suggest that telomere dysfunction may occur early in ovarian carcinogenesis and, importantly, that it may play a critical role in the initiation and progression of the disease. Recognizing telomere dysfunction as a pervasive feature of this heterogeneous malignancy may facilitate the future development of novel diagnostic tools and improved methods of disease monitoring and treatment.Item A plasma telomeric cell-free DNA level in unaffected women with BRCA1 or/and BRCA2 mutations: a pilot study(Impact Journals, 2017-12-29) Dey, Shatovisha; Marino, Natascia; Bishop, Kanokwan; Dahlgren, Paige N.; Shendre, Aditi; Storniolo, Anna Maria; He, Chunyan; Tanaka, Hiromi; Medical and Molecular Genetics, School of MedicinePlasma cell-free DNA (cfDNA) is a small DNA fragment circulating in the bloodstream originating from both non-tumor- and tumor-derived cells. A previous study showed that a plasma telomeric cfDNA level decreases in sporadic breast cancer patients compared to controls. Tumor suppressor gene products including BRCA1 and BRCA2 (BRCA1&2) play an important role in telomere maintenance. In this study, we hypothesized that the plasma telomeric cfDNA level is associated with the mutation status of BRCA1&2 genes. To test this hypothesis, we performed plasma telomeric cfDNA quantitative PCR (qPCR)-based assays to compare 28 women carriers of the BRCA1&2 mutation with age-matched controls of 28 healthy women. The results showed that the plasma telomeric cfDNA level was lower in unaffected BRCA1&2 mutation carriers than in age-matched controls from non-obese women (BMI < 30), while there was no association between unaffected BRCA1&2 mutation carriers and age-matched controls in obese women (BMI > 30). Moreover, the plasma telomeric cfDNA level applied aptly to the Tyrer-Cuzick model in non-obese women. These findings suggest that circulating cfDNA may detect dysfunctional telomeres derived from cells with BRCA1&2 mutations and, therefore, its level is associated with breast cancer susceptibility. This pilot study warrants further investigation to elucidate the implication of plasma telomeric cfDNA levels in relation to cancer and obesity.Item Telomere length in patients with alcohol-associated liver disease – a brief report(Sage, 2022) Huda, Nazmul; Kusumanchi, Praveen; Perez, Kristina; Jiang, Yanchao; Skill, Nicholas J.; Sun, Zhaoli; Ma, Jing; Yang, Zhihong; Liangpunsakul, Suthat; Medicine, School of MedicineThe intact telomere structure is essential for the prevention of the chromosome end-to-end fusions and maintaining genomic integrity. The maintenance of telomere length is critical for cellular homeostasis. The shortening of telomeres has been reported in patients with chronic liver diseases. The telomere length has not been systemically studied in patients with alcohol-associated liver disease (ALD) at different stages, such as alcoholic hepatitis and alcoholic cirrhosis. In this brief report, we observed evidence of telomere shortening without changes in the telomerase activity in the liver of patients with alcoholic hepatitis and alcoholic cirrhosis when compared to controls. The alterations in the genes associated with telomere binding proteins were only observed in patients with alcoholic cirrhosis. Future studies are required to determine the mechanism of how alcohol affects the length of the telomere and if the shortening impacts the disease progression in ALD.Item Telomere Shortening in the Alzheimer’s Disease Neuroimaging Initiative Cohort(IOS Press, 2019-09-03) Nudelman, Kelly N. H.; Lin, Jue; Lane, Kathleen A.; Nho, Kwangsik; Kim, Sungeun; Faber, Kelley M.; Risacher, Shannon L.; Foroud, Tatiana M.; Gao, Sujuan; Davis, Justin W.; Weiner, Michael W.; Saykin, Andrew J.; Initiative for the Alzheimer’s Disease Neuroimaging; Medical and Molecular Genetics, School of MedicineBACKGROUND: Although shorter telomeres have been associated with Alzheimer’s disease (AD), it is unclear whether longitudinal change in telomere length is associated with AD progression. OBJECTIVE: To investigate the association of telomere length change with AD diagnosis and progression. METHODS: In 653 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, T/S ratio (telomere vs. single copy gene), a proxy of telomere length, was measured for up to five visits per participant (N=1918 samples post-QC) using quantitative PCR (qPCR). T/S ratio was adjusted for batch effects and DNA storage time. A mixed effects model was used to evaluate association of telomere length with AD diagnostic group and interaction of age and diagnosis. Another mixed effects model was used to compare T/S ratio changes pre- to post-conversion to MCI or AD to telomere change in participants with stable diagnoses. RESULTS: Shorter telomeres were associated with older age (Effect Size (ES)=−0.23) and male sex (ES=−0.26). Neither baseline T/S ratio (ES=−0.036) nor T/S ratio change (ES=0.046) differed significantly between AD diagnostic groups. MCI/AD converters showed greater, but non-significant, telomere shortening compared to non-converters (ES=−0.186). CONCLUSIONS: Although AD compared to controls showed small, non-significant effects for baseline T/S ratio and T/S ratio shortening, we did observe a larger, though still non-significant effect for greater telomere shortening in converters compared to non-converters. Although our results do not support telomere shortening as a robust biomarker of AD progression, further investigation in larger samples and for subgroups of participants may be informative.