- Browse by Subject
Browsing by Subject "Telomerase"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item The impact of telomeres and telomerase in cellular biology and medicine: it’s not the end of the story(Wiley, 2011-01) Herbert, Brittney-Shea; Department of Medical & Molecular Genetics, IU School of MedicineItem Investigations of the Telomerase Template Antagonist GRN163L and Implications for Augmenting Breast Cancer Therapy(2009-03-18T18:35:09Z) Goldblatt, Erin M.Breast cancer is the second most common cancer among women in the US after skin cancer. While early detection and improved therapy has led to an overall decline in breast cancer mortality, metastatic disease remains largely incurable, indicating a need for improved therapeutic options for patients. Telomeres are repetitive (TTAGGG)n DNA sequences found at the end of chromosomes that protect the ends from recombination, end to end fusions, and recognition as damaged DNA. The enzyme telomerase acts to stabilize short telomeres, preventing apoptosis or senescence due to genomic instability. Telomerase is active in 85-90% of cancers, and inactive in most normal cells, making telomerase an attractive target for cancer therapy. Use of the telomerase-specific, lipidated oligonucleotide GRN163L can antagonize telomerase activity and telomere maintenance in cancer cells by preventing telomerase from binding to telomeres. GRN163L has been shown by our laboratory to inhibit breast cancer cell growth and metastasis in animal models. However, the mechanisms of cancer cell growth and metastatic inhibition via GRN163L are not completely understood. The overall goal of this research project was to further elucidate the role of telomerase in breast cancer cell survival by: 1) determining the effects of combining telomere dysfunction induced by GRN163L with a DNA damage inducer (irradiation); 2) elucidating the mechanisms underlying the cellular response to GRN163L and the effect of combination therapy with the mitotic inhibitor paclitaxel; and 3) testing the hypothesis that a telomerase inhibitor can augment the effects of trastuzumab in breast cancer cells with HER2 amplification. Results support the central hypothesis that the telomere dysfunction, structural and proliferative changes in breast cancer cells induced by GRN163L can synergize with irradiation, paclitaxel, and trastuzumab to inhibit the tumorigenicity of breast cancer cells both in vitro and in vivo. Furthermore, GRN163L can restore sensitivity of therapeutically resistant breast cancer cells to trastuzumab. These results provide insight into the role of telomerase in cancer cell growth. Additionally, implications of this research support GRN163L as an important part of therapeutic regimens for primary tumors, recurrence, and metastatic disease.Item Medical genetics and epigenetics of telomerase(Wiley, 2011-03) Koziel, Jillian E.; Fox, Melanie J.; Steding, Catherine E.; Sprouse, Alyssa A.; Herbert, Brittney-Shea; Department of Medical & Molecular Genetics, IU School of MedicineTelomerase is a specialized reverse transcriptase that extends and maintains the terminal ends of chromosomes, or telomeres. Since its discovery in 1985 by Nobel Laureates Elizabeth Blackburn and Carol Greider, thousands of articles have emerged detailing its significance in telomere function and cell survival. This review provides a current assessment on the importance of telomerase regulation and relates it in terms of medical genetics. In this review, we discuss the recent findings on telomerase regulation, focusing on epigenetics and non-coding RNAs regulation of telomerase, such as microRNAs and the recently discovered telomeric-repeat containing RNA transcripts. Human genetic disorders that develop due to mutations in telomerase subunits, the role of single nucleotide polymorphisms in genes encoding telomerase components and diseases as a result of telomerase regulation going awry are also discussed. Continual investigation of the complex regulation of telomerase will further our insight into the use of controlling telomerase activity in medicine.Item NFX1-123 is highly expressed in cervical cancer and increases growth and telomerase activity in HPV 16E6 expressing cells(Elsevier, 2019-05-01) Vliet-Gregg, Portia A.; Robinson, Kristin L.; Levan, Justine; Matsumot, Lisa R.; Katzenellenbogen, Rachel A.; Pediatrics, School of MedicineA significant contributor to women’s cancer mortality worldwide is cervical cancer, which is caused by high-risk human papillomavirus (HR HPV). The two viral oncoproteins of HR HPV, E6 and E7, partner with host cell proteins to target oncogenic proteins and pathways. Previously, we have shown HR HPV type 16 E6 (16E6) interacts with the host protein NFX1-123 to target telomerase and cellular immortalization, requiring NFX1-123 to fully upregulate telomerase activity. We now report that NFX1-123 is highly expressed in primary cervical cancers. In vitro, cells expressing 16E6 and overexpressing NFX1-123 have extended active growth, decreased senescence marker staining, and more rapid cell cycling compared to 16E6 expressing cells with endogenous amounts of NFX1-123. These findings were associated with increased telomerase activity and augmented expression of its catalytic subunit, hTERT. In complement, HPV 16 positive cervical cancer cell lines with knocked down NFX1-123 had slowed growth and reduced hTERT over time. In cells that express HR HPV E6, greater expression of NFX1-123 can modify active cellular growth and augment hTERT expression and telomerase activity over time, potentially supporting the initiation and progression of HPV-associated cancers.Item Onset of Telomere Dysfunction and Fusions in Human Ovarian Carcinoma(MDPI, 2019-05-04) Huda, Nazmul; Xu, Yan; Bates, Alison M.; Rankin, Deborah A.; Kannan, Nagarajan; Gilley, David; Pathology and Laboratory Medicine, School of MedicineTelomere dysfunction has been strongly implicated in the initiation of genomic instability and is suspected to be an early event in the carcinogenesis of human solid tumors. Recent findings have established the presence of telomere fusions in human breast and prostate malignancies; however, the onset of this genomic instability mechanism during progression of other solid cancers is not well understood. Herein, we explored telomere dynamics in patient-derived epithelial ovarian cancers (OC), a malignancy characterized by multiple distinct subtypes, extensive molecular heterogeneity, and widespread genomic instability. We discovered a high frequency of telomere fusions in ovarian tumor tissues; however, limited telomere fusions were detected in normal adjacent tissues or benign ovarian samples. In addition, we found relatively high levels of both telomerase activity and hTERT expression, along with anaphase bridges in tumor tissues, which were notably absent in adjacent normal ovarian tissues and benign lesions. These results suggest that telomere dysfunction may occur early in ovarian carcinogenesis and, importantly, that it may play a critical role in the initiation and progression of the disease. Recognizing telomere dysfunction as a pervasive feature of this heterogeneous malignancy may facilitate the future development of novel diagnostic tools and improved methods of disease monitoring and treatment.Item SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells(Lippincott Williams & Wilkins, 2017-06-20) Zhang, Lianghui; Jambusaria, Ankit; Hong, Zhigang; Marsboom, Glenn; Toth, Peter T.; Herbert, Brittney-Shea; Malik, Asrar B.; Rehman, Jalees; Medical and Molecular Genetics, School of MedicineBACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.Item Targeting telomerase in HER2 positive breast cancer: role of cancer stem cells(2015-02) Koziel, Jillian Elizabeth; Herbert, Brittney-Shea; Chan, Rebecca; Schneider, Bryan P.; Tanaka, HiromiCancer stem cells (CSCs) are proposed to play a major role in tumor progression, metastasis, and recurrence. The Human Epidermal growth factor Receptor 2 (HER2) gene is amplified and/or its protein product overexpressed in approximately 20% of breast cancers. HER2 overexpression is associated with increased CSCs, which may explain the aggressive phenotype and increased likelihood of recurrence for HER2+ breast cancers. Telomerase is reactivated in tumor cells, including CSCs, but has limited activity in normal tissues, providing support for the use of telomerase inhibition in anti-cancer therapy. Telomerase inhibition via an antagonistic oligonucleotide, imetelstat (GRN163L), has been shown to be effective in limiting cell growth in vitro and limiting tumor growth. Moreover, we have previously shown imetelstat can decrease metastases to the lungs, leading us to question if this is due to imetelstat targeting the CSC population. In this thesis, we investigated the effects of imetelstat on CSC and non-CSC populations of HER2+ breast cancer cell lines, as well as a triple negative breast cancer cell line, which lacks HER2 overexpression. Imetelstat inhibited telomerase activity in both CSC and non-CSC subpopulations. Moreover, imetelstat treatment alone and in combination with trastuzumab significantly reduced the CSC fraction and inhibited CSC functional ability, as shown by a significant decrease in mammosphere counts and invasive potential. Tumor growth rate was slower in combination treated mice compared to either drug alone. Additionally, there was a trend toward decreased CSC marker expression in imetelstat treated xenograft cells compared to vehicle control. The decrease in CSC marker expression we observed occurred prior to and after telomere shortening, suggesting imetelstat acts on the CSC subpopulation in telomere length dependent and independent mechanisms. Our study suggests addition of imetelstat to trastuzumab may enhance the effects of HER2 inhibition therapy.Item The telomerase inhibitor imetelstat alone, and in combination with trastuzumab, decreases the cancer stem cell population and self-renewal of HER2+ breast cancer cells.(Springer, 2015-02) Koziel, Jillian E.; Herbert, Brittney-Shea; Department of Medical & Molecular Genetics, IU School of MedicineCancer stem cells (CSCs) are thought to be responsible for tumor progression, metastasis, and recurrence. HER2 overexpression is associated with increased CSCs, which may explain the aggressive phenotype and increased likelihood of recurrence for HER2(+) breast cancers. Telomerase is reactivated in tumor cells, including CSCs, but has limited activity in normal tissues, providing potential for telomerase inhibition in anti-cancer therapy. The purpose of this study was to investigate the effects of a telomerase antagonistic oligonucleotide, imetelstat (GRN163L), on CSC and non-CSC populations of HER2(+) breast cancer cell lines. The effects of imetelstat on CSC populations of HER2(+) breast cancer cells were measured by ALDH activity and CD44/24 expression by flow cytometry as well as mammosphere assays for functionality. Combination studies in vitro and in vivo were utilized to test for synergism between imetelstat and trastuzumab. Imetelstat inhibited telomerase activity in both subpopulations. Moreover, imetelstat alone and in combination with trastuzumab reduced the CSC fraction and inhibited CSC functional ability, as shown by decreased mammosphere counts and invasive potential. Tumor growth rate was slower in combination-treated mice compared to either drug alone. Additionally, there was a trend toward decreased CSC marker expression in imetelstat-treated xenograft cells compared to vehicle control. Furthermore, the observed decrease in CSC marker expression occurred prior to and after telomere shortening, suggesting that imetelstat acts on the CSC subpopulation in telomere length-dependent and -independent mechanisms. Our study suggests addition of imetelstat to trastuzumab may enhance the effects of HER2 inhibition therapy, especially in the CSC population.Item Telomere length in patients with alcohol-associated liver disease – a brief report(Sage, 2022) Huda, Nazmul; Kusumanchi, Praveen; Perez, Kristina; Jiang, Yanchao; Skill, Nicholas J.; Sun, Zhaoli; Ma, Jing; Yang, Zhihong; Liangpunsakul, Suthat; Medicine, School of MedicineThe intact telomere structure is essential for the prevention of the chromosome end-to-end fusions and maintaining genomic integrity. The maintenance of telomere length is critical for cellular homeostasis. The shortening of telomeres has been reported in patients with chronic liver diseases. The telomere length has not been systemically studied in patients with alcohol-associated liver disease (ALD) at different stages, such as alcoholic hepatitis and alcoholic cirrhosis. In this brief report, we observed evidence of telomere shortening without changes in the telomerase activity in the liver of patients with alcoholic hepatitis and alcoholic cirrhosis when compared to controls. The alterations in the genes associated with telomere binding proteins were only observed in patients with alcoholic cirrhosis. Future studies are required to determine the mechanism of how alcohol affects the length of the telomere and if the shortening impacts the disease progression in ALD.