ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Tau aggregates"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Interactome Analysis of Tau‐seed Isolated from AD Brains Suggests New Mechanism for Tau Aggregation and Spreading
    (Wiley, 2025-01-03) Martinez, Pablo; You, Yanwen; Patel, Henika; Jury, Nur; Min, Yuhao; Redding, Javier; Huang, Xiaoqing; Dutta, Sayan; Mosley, Amber L.; Rochet, Jean-Christophe; Zhang, Jie; Ertekin-Taner, Nilüfer; Troncoso, Juan C.; Lasagna Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of Medicine
    Background: Tau aggregates, a hallmark of Alzheimer’s disease (AD) and other tauopathies, spread throughout the brain, contributing to neurodegeneration. How this propagation occurs remains elusive. Previous research suggests that tau‐seed interactors play a crucial role. Based on this, the study aimed to identify novel tau‐seed interactors in AD brains and validate their impact in vivo. Method: AD and control brain extracts were separated in fractions by Size Exclusion Chromatography. Fractions with the highest tau seeding activity, measured using a tai‐biosensor cell line, were analyzed by mass spectrometry to identify interacting proteins. Bioinformatic tools dissected enriched pathways, identifying interactors that were validated in a Drosophila tauopathy model by genetically interfering with their homologs and assessing tau accumulation and eye degeneration. Results: Tau seeding activity was concentrated in high molecular weight fractions containing only a small portion of total tau in the AD brains. Compared to controls, AD brains revealed a distinct interactome for tau‐seeds, enriched in proteins associated with synaptic and mitochondrial pathways. Notably, Drosophila screening confirmed that several novel interactors significantly reduced tau accumulation and eye degeneration, suggesting their potential therapeutic relevance. Conclusion: This study sheds light on tau propagation mechanisms in AD by identifying novel tau‐seed interactors. These interactors, particularly those involved in synaptic and mitochondrial pathways, offer promising targets for therapeutic interventions aimed at decreasing tau spread and potentially preventing neurodegeneration in tauopathies. The findings add to the growing evidence that targeting tau‐seed interactors, like previously identified BSN, could represent a novel strategy for treating these debilitating conditions.
  • Loading...
    Thumbnail Image
    Item
    Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates
    (American Association for the Advancement of Science, 2021) Brelstaff, Jack H.; Mason, Matthew; Katsinelos, Taxiarchis; McEwan, William A.; Ghetti, Bernardino; Tolkovsky, Aviva M.; Grazia Spillantini, Maria; Pathology and Laboratory Medicine, School of Medicine
    The microtubule-associated protein tau aggregates in multiple neurodegenerative diseases, causing inflammation and changing the inflammatory signature of microglia by unknown mechanisms. We have shown that microglia phagocytose live neurons containing tau aggregates cultured from P301S tau mice due to neuronal tau aggregate-induced exposure of the “eat me” signal phosphatidylserine. Here, we show that after phagocytosing tau aggregate-bearing neurons, microglia become hypophagocytic while releasing seed-competent insoluble tau aggregates. These microglia express a senescence-like phenotype, demonstrated by acidic β-galactosidase activity, secretion of paracrine senescence-associated cytokines, and maturation of matrix remodeling enzymes, results that are corroborated in P301S mouse brains and ex vivo brain slices. In particular, the nuclear factor κB–dependent activation of matrix metalloprotease 3 (MMP3/stromelysin1) was replicated in brains from patients with tauopathy. These data show that microglia that have been activated to ingest live tau aggregates-bearing neurons behave hormetically, becoming hypofunctional while acting as vectors of tau aggregate spreading.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University