ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "TRPC6"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    PKC-dependent Phosphorylation of the H1 Histamine Receptor Modulates TRPC6 Activity
    (MDPI, 2014-04-04) Chen, Xingjuan; Egly, Christian; Riley, Ashley M.; Li, Wennan; Tewson, Paul; Hughes, Thomas E.; Quinn, Anne Marie; Obukhov, Alexander G.; Cellular and Integrative Physiology, School of Medicine
    Transient receptor potential canonical 6 (TRPC6) is a cation selective, DAG-regulated, Ca2+-permeable channel activated by the agonists of Gq-protein-coupled heptahelical receptors. Dysfunctions of TRPC6 are implicated in the pathogenesis of various cardiovascular and kidney conditions such as vasospasm and glomerulosclerosis. When stimulated by agonists of the histamine H1 receptor (H1R), TRPC6 activity decays to the baseline despite the continuous presence of the agonist. In this study, we examined whether H1R desensitization contributes to regulating the decay rate of TRPC6 activity upon receptor stimulation. We employed the HEK expression system and a biosensor allowing us to simultaneously detect the changes in intracellular diacylglycerol (DAG) and Ca2+ concentrations. We found that the histamine-induced DAG response was biphasic, in which a transient peak was followed by maintained elevated plateau, suggesting that desensitization of H1R takes place in the presence of histamine. The application of PKC inhibitor Gö6983 slowed the decay rate of intracellular DAG concentration. Activation of the mouse H1R mutant lacking a putative PKC phosphorylation site, Ser399, responsible for the receptor desensitization, resulted in a prolonged intracellular DAG increase and greater Mn2+ influx through the TRPC6 channel. Thus, our data support the hypothesis that PKC-dependent H1R phosphorylation leads to a reduced production of intracellular DAG that contributes to TRPC6 activity regulation.
  • Loading...
    Thumbnail Image
    Item
    Transient Receptor Potential Canonical 6 (TRPC6) Channel in the Pathogenesis of Diseases: A Jack of Many Trades
    (Springer Nature, 2023) Saqib, Uzma; Munjuluri, Sreepadaarchana; Sarkar, Sutripta; Biswas, Subir; Mukherjee, Oyshi; Satsangi, Hargopal; Baig, Mirza S.; Obukhov, Alexander G.; Hajela, Krishnan; Anatomy, Cell Biology and Physiology, School of Medicine
    The mammalian Transient Receptor Potential Canonical (TRPC) subfamily comprises seven transmembrane proteins (TRPC1-7) forming cation channels in the plasma membrane of mammalian cells. TRPC channels mediate Ca2+ and Na+ influx into the cells. Amongst TRPCs, TRPC6 deficiency or increased activity due to gain-of-function mutations has been associated with a multitude of diseases, such as kidney disease, pulmonary disease, and neurological disease. Indeed, the TRPC6 protein is expressed in various organs and is involved in diverse signalling pathways. The last decade saw a surge in the investigative studies concerning the physiological roles of TRPC6 and describing the development of new pharmacological tools modulating TRPC6 activity. The current review summarizes the progress achieved in those investigations.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University