- Browse by Subject
Browsing by Subject "TRPC"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item In Vivo Identification and Manipulation of the Ca2+ Selectivity Filter in the Drosophila Transient Receptor Potential Channel(Society for Neuroscience, 2007-01-17) Liu, Che H.; Wang, Tao; Postma, Marten; Obukhov, Alexander G.; Montell, Craig; Hardie, Roger C.; Cellular and Integrative Physiology, School of MedicineNull mutations in the transient receptor potential (trp) gene eliminate the major, Ca2+-selective component of the light-sensitive conductance in Drosophila photoreceptors. Although it is the prototypical member of the TRP ion channel superfamily, conclusive evidence that TRP is a pore-forming channel subunit in vivo is lacking. We show here that mutating a specific acidic residue (Asp621) in the putative pore virtually eliminated Ca2+ permeation in vivo and altered other biophysical properties of the native TRP conductance. The results identify Asp621 as a critical residue of the TRP Ca2+ selectivity filter, provide the first rigorous demonstration that a TRP protein is a pore-forming subunit in any native system, and point to the likely location of the pore in mammalian canonical TRP channels. The specific elimination of Ca2+ permeation in TRP also provided a unique opportunity to address the roles of Ca2+ influx in vivo. We found that Asp621 mutations profoundly affected several key aspects of the light response and caused light-dependent retinal degeneration.Item Transient Receptor Potential Canonical (TRPC) Channels: Then and Now(MDPI, 2020-08-28) Chen, Xingjuan; Sooch, Gagandeep; Demaree, Isaac S.; White, Fletcher A.; Obukhov, Alexander G.; Anesthesia, School of MedicineTwenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1–7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs’ functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.