- Browse by Subject
Browsing by Subject "System Biology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item INTEGRATIVE SYSTEM BIOLOGY STUDIES ON HIGH THROUGHPUT GENOMICS AND PROTEOMICS DATASET(2012-03-20) Sonachalam, Madhankumar; Chen, Jake Yue; Shen, Li; Zhou, YaoqiThe post genomic era has propelled us to the view that the biological systems are complex network of interacting genes, proteins and small molecules that give rise to biological form and function. The past decade has seen the advent of number of new technologies designed to study the biological systems on a genome wide scale. These new technologies offers an insight in to the activity of thousands of genes and proteins in cell thereby changed the conventional reductionist view of the systems. However the deluge of data surpasses the analytical and critical abilities of the researches and thereby demands the development of new computational methods. The challenge no longer lies in the acquisition of expression profiles, but rather in the interpretation for the results to gain insights into biological mechanisms. In three different case studies, we applied various system biology techniques on publicly available and in-house genomics and proteomics data set to identify sub-network signatures. In First study, we integrated prior knowledge from gene signatures, GSEA and gene/protein network modeling to identify pathways involved in colorectal cancer, while in second, we identified plasma based network signatures for Alzheimer's disease by combining various feature selection and classification approach. In final study, we did an integrated miRNA-mRNA analysis to identify the role of Myeloid Derived Stem Cells (MDSCs) in T-Cell suppression.Item System biology modeling : the insights for computational drug discovery(2014) Huang, Hui; Chen, Jake; Wu, Huanmei; Al Hasan, Mohammad; Liu, Yunlong; Zhou, YaoqiTraditional treatment strategy development for diseases involves the identification of target proteins related to disease states, and the interference of these proteins with drug molecules. Computational drug discovery and virtual screening from thousands of chemical compounds have accelerated this process. The thesis presents a comprehensive framework of computational drug discovery using system biology approaches. The thesis mainly consists of two parts: disease biomarker identification and disease treatment discoveries. The first part of the thesis focuses on the research in biomarker identification for human diseases in the post-genomic era with an emphasis in system biology approaches such as using the protein interaction networks. There are two major types of biomarkers: Diagnostic Biomarker is expected to detect a given type of disease in an individual with both high sensitivity and specificity; Predictive Biomarker serves to predict drug response before treatment is started. Both are essential before we even start seeking any treatment for the patients. In this part, we first studied how the coverage of the disease genes, the protein interaction quality, and gene ranking strategies can affect the identification of disease genes. Second, we addressed the challenge of constructing a central database to collect the system level data such as protein interaction, pathway, etc. Finally, we built case studies for biomarker identification for using dabetes as a case study. The second part of the thesis mainly addresses how to find treatments after disease identification. It specifically focuses on computational drug repositioning due to its low lost, few translational issues and other benefits. First, we described how to implement literature mining approaches to build the disease-protein-drug connectivity map and demonstrated its superior performances compared to other existing applications. Second, we presented a valuable drug-protein directionality database which filled the research gap of lacking alternatives for the experimental CMAP in computational drug discovery field. We also extended the correlation based ranking algorithms by including the underlying topology among proteins. Finally, we demonstrated how to study drug repositioning beyond genomic level and from one dimension to two dimensions with clinical side effect as prediction features.