- Browse by Subject
Browsing by Subject "System Engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Extrusion Based Ceramic 3D Printing - Printer Development, Part Characterization, and Model-Based Systems Engineering Analysis(2020-12) Pai Raikar, Piyush Shrihari; Zhang, Jing; Agarwal, Mangilal; Anasori, BabakCeramics have been extensively used in aerospace, automotive, medical, and energy industries due to their unique combination of mechanical, thermal, and chemical properties. The objective of this thesis is to develop an extrusion based ceramic 3D printing process to digitally produce a casting mold. To achieve the objective, an in-house designed ceramic 3D printer was developed by converting a filament based plastic 3D printer. For mold making applications, zircon was selected because it is an ultra-high temperature ceramic with high toughness and good refractory properties. Additionally, alumina, bioglass, and zirconia slurries were formulated and used as the feedstock material for the ceramic 3D printer. The developed 3D printing system was used to demonstrate successful printing of special feature parts such as thin-walled high aspect ratio structures and biomimetically inspired complex structures. Also, proof of concept with regard to the application of 3D printing for producing zircon molds and casting of metal parts was also successfully demonstrated. To characterize the printed parts, microhardness test, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were conducted. The zircon samples showed an increase in hardness value with an initial increase in heat treatment temperature followed by a drop due to the development of porosity in the microstructure, caused by the decomposition of the binder. The peak hardness value for zircon was observed to be 101±10 HV0.2. Similarly, the microhardness values of the other 3D printed ceramic specimens were observed to increase from 37±3 to 112±5 HV0.2 for alumina, 23±5 to 35±1 HV0.2 for bioglass, and 22±5 to 31±3 HV0.2 for zirconia, before and after the heat-treatment process, respectively. Finally, a system model for the ceramic 3D printing system was developed through the application of the model-based systems engineering (MBSE) approach using the MagicGrid framework. Through the system engineering effort, a logical level solution architecture was modeled, which captured the different system requirements, the system behaviors, and the system functionalities. Also, a traceability matrix for the system from a very abstract logical level to the definition of physical requirements for the subsystems was demonstrated.Item Pattern Based System Engineering (PBSE)- Product Lifecycle Management (PLM) Integration and Validation(2017-11-17) Gupta, Rajat; El-Mounayri, Dr. Hazim; Agarwal, Dr. Mangilal; Li, Dr. ShuningMass customization, small lot sizes, reduced cost, high variability of product types and changing product portfolio are characteristics of modern manufacturing systems during life cycle. A direct consequence of these characteristics is a more complex system and supply chain. Product lifecycle management (PLM) and model based system engineering (MBSE) are tools which have been proposed and implemented to address different aspects of this complexity and resulting challenges. Our previous work has successfully implemented a MBSE model into a PLM platform. More specifically, Pattern based system engineering (S* pattern) models of systems are integrated with TEAMCENTER to link and interface system level with component level, and streamline the lifecycle across disciplines. The benefit of the implementation is two folded. On one side it helps system engineers using system engineering models enable a shift from learning how to model to implementing the model, which leads to more effective systems definition, design, integration and testing. On the other side the PLM platform provides a reliable database to store legacy data for future use also track changes during the entire process, including one of the most important tools that a systems engineer needs which is an automatic report generation tool. In the current work, we have configured a PLM platform (TEAMCENTER) to support automatic generation of reports and requirements tables using a generic Oil Filter system lifecycle. There are three tables that have been configured for automatic generation which are Feature definitions table, Detail Requirements table and Stakeholder Feature Attributes table. These tables where specifically chosen as they describe all the requirements of the system and cover all physical behaviours the oil filter system shall exhibit during its physical interactions with external systems. The requirement tables represent core content for a typical systems engineering report. With the help of the automatic report generation tool, it is possible to prepare the entire report within one single system, the PLM system, to ensure a single reliable data source for an organization. Automatic generation of these contents can save the systems engineers time, avoid duplicated work and human errors in report preparation, train future generation of workforce in the lifecycle all the while encouraging standardized documents in an organization.