- Browse by Subject
Browsing by Subject "System"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Applied Artificial Intelligence in Healthcare: A Review of Computer Vision Technology Application in Hospital Settings(MDPI, 2024-03-28) Lindroth, Heidi; Nalaie, Keivan; Raghu, Roshini; Ayala, Ivan N.; Busch, Charles; Bhattacharyya, Anirban; Franco, Pablo Moreno; Diedrich, Daniel A.; Pickering, Brian W.; Herasevich, Vitaly; School of NursingComputer vision (CV), a type of artificial intelligence (AI) that uses digital videos or a sequence of images to recognize content, has been used extensively across industries in recent years. However, in the healthcare industry, its applications are limited by factors like privacy, safety, and ethical concerns. Despite this, CV has the potential to improve patient monitoring, and system efficiencies, while reducing workload. In contrast to previous reviews, we focus on the end-user applications of CV. First, we briefly review and categorize CV applications in other industries (job enhancement, surveillance and monitoring, automation, and augmented reality). We then review the developments of CV in the hospital setting, outpatient, and community settings. The recent advances in monitoring delirium, pain and sedation, patient deterioration, mechanical ventilation, mobility, patient safety, surgical applications, quantification of workload in the hospital, and monitoring for patient events outside the hospital are highlighted. To identify opportunities for future applications, we also completed journey mapping at different system levels. Lastly, we discuss the privacy, safety, and ethical considerations associated with CV and outline processes in algorithm development and testing that limit CV expansion in healthcare. This comprehensive review highlights CV applications and ideas for its expanded use in healthcare.Item Recovering Missing Component Dependence for System Reliability Prediction via Synergy between Physics and Data(American Society of Mechanical Engineers, 2021) Li, Huiru; Du, Xiaoping; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyPredicting system reliability is often a core task in systems design. System reliability depends on component reliability and dependence of components. Component reliability can be predicted with a physics-based approach if the associated physical models are available. If the models do not exist, component reliability may be estimated from data. When both types of components coexist, their dependence is often unknown, and therefore, the component states are assumed independent by the traditional method, which can result in a large error. This study proposes a new system reliability method to recover the missing component dependence, thereby leading to a more accurate estimate of the joint probability density function (PDF) of all the component states. The method works for series systems whose load is shared by its components that may fail due to excessive loading. For components without physical models available, the load data are recorded upon failure, and equivalent physical models are created; the model parameters are estimated by the proposed Bayesian approach. Then models of all component states become available, and the dependence of component states, as well as their joint PDF, can be estimated. Four examples are used to evaluate the proposed method, and the results indicate that the method can produce more accurate predictions of system reliability than the traditional method that assumes independent component states.