ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Sympathetic nerves"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Sympathetic nerve fibers and ganglia in canine cervical vagus nerves: Localization and quantitation
    (Elsevier, 2013) Onkka, Patrick; Maskoun, Waddah; Rhee, Kyoung-Suk; Hellyer, Jessica; Patel, Jheel; Tan, Jian; Chen, Lan S.; Vinters, Harry V.; Fishbein, Michael C.; Chen, Peng-Sheng; Medicine, School of Medicine
    Background: Cervical vagal nerve (CVN) stimulation may improve left ventricular ejection fraction in patients with heart failure. Objectives: To test the hypothesis that sympathetic structures are present in the CVN and to describe the location and quantitate these sympathetic components of the CVN. Methods: We performed immunohistochemical studies of the CVN from 11 normal dogs and simultaneously recorded stellate ganglion nerve activity, left thoracic vagal nerve activity, and subcutaneous electrocardiogram in 2 additional dogs. Results: A total of 28 individual nerve bundles were present in the CVNs of the first 11 dogs, with an average of 1.87±1.06 per dog. All CVNs contain tyrosine hydroxylase-positive (sympathetic) nerves, with a total cross-sectional area of 0.97±0.38 mm(2). The sympathetic nerves were nonmyelinated, typically located at the periphery of the nerve bundles and occupied 0.03%-2.80% of the CVN cross-sectional area. Cholineacetyltransferase-positive nerve fibers occupied 12.90%-42.86% of the CVN cross-sectional areas. Ten of 11 CVNs showed tyrosine hydroxylase and cholineacetyltransferase colocalization. In 2 dogs with nerve recordings, we documented heart rate acceleration during spontaneous vagal nerve activity in the absence of stellate ganglion nerve activity. Conclusions: Sympathetic nerve fibers are invariably present in the CVNs of normal dogs and occupy in average up to 2.8% of the cross-sectional area. Because sympathetic nerve fibers are present in the periphery of the CVNs, they may be susceptible to activation by electrical stimulation. Spontaneous activation of the sympathetic component of the vagal nerve may accelerate the heart rate.
  • Loading...
    Thumbnail Image
    Item
    Sympathetic Nerve Fibers in Human Cervical and Thoracic Vagus Nerves
    (Els, 2014-08) Seki, Atsuko; Green, Hunter R.; Lee, Thomas D.; Hong, LongSheng; Tan, Jian; Vinters, Harry V.; Chen, Peng-Sheng; Fishbein, Michael C.; Department of Medicine, IU School of Medicine
    Background Vagus nerve stimulation therapy (VNS) has been used for chronic heart failure (CHF), and is believed to improve imbalance of autonomic control by increasing parasympathetic activity. Although it is known that there is neural communication between the VN and the cervical sympathetic trunk, there are few data regarding the quantity and/or distribution of the sympathetic components within the VN. Objective To examine the sympathetic component within human VN and correlate these with the presence of cardiac and neurologic diseases. Methods We performed immunohistochemistry on 31 human cervical and thoracic VNs (total 104 VNs) from autopsies and we reviewed the patients’ records. We correlated the quantity of sympathetic nerve fibers within the VNs with cardiovascular and neurologic disease states. Results All 104 VNs contain TH positive (sympathetic) nerve fibers; the mean TH positive areas were 5.47% in right cervical, 3.97% in left cervical, 5.11% in right thoracic, and 4.20% in left thoracic VN. The distribution of TH positive nerve fibers varied from case to case: central, peripheral, or scattered throughout nerve bundles. No statistically significant differences in nerve morphology were seen between diseases in which VNS is considered effective (depression and CHF), and other cardiovascular diseases, or neurodegenerative disease. Conclusion Human VNs contain sympathetic nerve fibers. The sympathetic component within the VN could play a role in physiologic effects reported with VNS. The recognition of sympathetic nerve fibers in the VNs may lead to better understanding of the therapeutic mechanisms of VNS.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University