- Browse by Subject
Browsing by Subject "Surface properties"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bioactive Compounds Enhance the Biocompatibility and the Physical Properties of a Glass Ionomer Cement(MDPI, 2024-11-07) de Castilho, Aline Rogéria Freire; Rosalen, Pedro Luiz; Oliveira, Marina Yasbeck; Burga-Sánchez, Jonny; Duarte, Simone; Murata, Ramiro Mendonça; Puppin Rontani, Regina Maria; Pediatric Dentistry, School of DentistryIn order to characterize a novel restorative material, knowledge about the toxicological effect on human cells and the physical behavior of a glass ionomer cement (GIC) containing flavonoids was established. The flavonoids apigenin, naringenin, quercetin, and liquiritigenin were manually incorporated into a GIC. In the control group, no incorporation was performed. Two cell culture assays evaluated the toxicity of GICs: SRB and MTT. For both assays, the keratinocyte cell line (HaCaT) was exposed to GIC (n = 3/group) for 24 h. The physical properties of the GICs were evaluated by compressive strength (n = 10), surface roughness (n = 10), and hardness (n = 10) tests. Cell viability by SRB ranged from 103% to 97%. The control revealed a significant decrease in the metabolism of cells (61%) by MTT, while the GIC+apigenin slightly increased the succinic dehydrogenase activity (105%; p > 0.05), also confirmed microscopically. The compressive strength and roughness values were similar among groups, but the hardness increased after the incorporation of naringenin and quercetin into GIC (p < 0.05). The incorporation of flavonoids positively altered the biological and physical properties of the GICs.Item Preparation and evaluation of a high-strength biocompatible glass-ionomer cement for improved dental restoratives(IOP, 2008) Xie, D.; Zhao, J.; Yang, Y.; Park, J.; Chu, T. M.; Zhang, J. T.; Biomedical Engineering, Purdue School of Engineering and TechnologyWe have developed a high-strength light-cured glass-ionomer cement (LCGIC). The polymer in the cement was composed of the 6-arm star-shape poly(acrylic acid) (PAA), which was synthesized using atom-transfer radical polymerization. The polymer was used to formulate with water and Fuji II LC filler to form LCGIC. Compressive strength (CS) was used as a screening tool for evaluation. Commercial glass-ionomer cement Fuji II LC was used as control. The results show that the 6-arm PAA polymer exhibited a lower viscosity in water as compared to its linear counterpart that was synthesized via conventional free-radical polymerization. This new LCGIC system was 48% in CS, 77% in diametral tensile strength, 95% in flexural strength and 59% in fracture toughness higher but 93.6% in shrinkage lower than Fuji II LC. An increasing polymer content significantly increased CS, whereas an increasing glass filler content increased neither yield strength nor ultimate CS except for modulus. During aging, the experimental cement showed a significant and continuous increase in yield strength, modulus and ultimate CS, but Fuji II LC only showed a significant increase in strength within 24 h. The experimental cement was very biocompatible in vivo to bone and showed little in vitro cytotoxicity. It appears that this novel LCGIC cement will be a better dental restorative because it demonstrated significantly improved mechanical strengths and better in vitro and in vivo biocompatibilities as compared to the current commercial LCGIC system.